Binomial Theorem 1 Question 25

27.

If the coefficients of x3 and x4 in the expansion of (1+ax+bx2)(12x)18 in powers of x are both zero, then (a,b) is equal to

(a) (16,2513)

(b) (14,2513)

(c) (14,2723)

(d) (16,2723)

Show Answer

Answer:

Correct Answer: 27. (d)

Solution:

  1. To find the coefficient of x3 and x4, use the formula of coefficient of xr in (1x)n is (1)rCr and then simplify.

In expansion of (1+ax+bx2)(12x)18.

Coefficient of x3= Coefficient of x3 in (12x)18

 + Coefficient of x2 in a(12x)18 + Coefficient of x in b(12x)18=18C323+a18C222b18C12

Given, coefficient of x3=0

18C323+a18C222b18C12=0

18×17×163×28+a18×17222b182=0

17ab=34×163 …….(i)

Similarly, coefficient of x4=0

18C424a18C323+b18C222=032a3b=240.(ii)

On solving Eqs. (i) and (ii), we get

a=16,b=2723



NCERT Chapter Video Solution

Dual Pane