Binomial Theorem 1 Question 24

26.

Given positive integers $r>1, n>2$ and the coefficient of $(3 r)$ th and $(r+2)$ th terms in the binomial expansion of $(1+x)^{2 n}$ are equal. Then,

(1980, 2M)

(a) $n=2 r$

(b) $n=2 r+1$

(c) $n=3 r$

(d) None of these

Show Answer

Answer:

Correct Answer: 26. (a)

Solution:

  1. In the expansion $(1+x)^{2 n}, t_{3 r}={ }^{2 n} C_{3 r-1}(x)^{3 r-1}$

and $\quad t_{r+2}={ }^{2 n} C_{r+1}(x)^{r+1}$

Since, binomial coefficients of $t_{3 r}$ and $t_{r+2}$ are equal.

$ \begin{aligned} & \therefore \quad{ }^{2 n} C_{3 r-1}={ }^{2 n} C_{r+1} \\ & \Rightarrow \quad 3 r-1=r+1 \quad \text { or } \quad 2 n=(3 r-1)+(r+1) \\ & \Rightarrow \quad 2 r=2 \quad \text { or } \quad 2 n=4 r \\ & \Rightarrow \quad r=1 \quad \text { or } \quad n=2 r \\ & \text { But } \quad r>1 \end{aligned} $

$\therefore$ We take, $n=2 r$



NCERT Chapter Video Solution

Dual Pane