Binomial Theorem 1 Question 12

13.

If the third term in the binomial expansion of $\left(1+x^{\log _{2} x}\right)^{5}$ equals 2560 , then a possible value of $x$ is

(a) $4 \sqrt{2}$

(b) $\frac{1}{4}$

(c) $\frac{1}{8}$

(d) $2 \sqrt{2}$

(2019 Main, 10 Jan I)

Show Answer

Answer:

Correct Answer: 13. (b)

Solution:

  1. The $(r+1)$ th term in the expansion of $(a+x)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} x^{r}$

$\therefore 3^{\text {rd }}$ term in the expansion of $\left(1+x^{\log _{2} x}\right)^{5}$ is

${ }^{5} C_{2}(1)^{5-2}\left(x^{\log _{2} x}\right)^{2}$

$\Rightarrow{ }^{5} C_{2}(1)^{5-2}\left(x^{\log _{2} x}\right)^{2}=2560$ (given)

$\Rightarrow \quad 10\left(x^{\log _{2} x}\right)^{2}=2560$

$\Rightarrow \quad x^{\left(2 \log _{2} x\right)}=256$

$\Rightarrow \quad \log _{2} x^{2 \log _{2} x}=\log _{2} 256$

taking $ \log _{2} \text { on both sides } $ $ \left(\because \log _{2} 256=\log _{2} 2^{8}=8\right) $

$\Rightarrow 2\left(\log _{2} x\right)\left(\log _{2} x\right)=8 $

$\left(\log _{2} x\right)^{2}=4 $

$\Rightarrow \log _{2} x= \pm 2 $

$\Rightarrow \log _{2} x=2 \text { or } \quad \log _{2} x=-2 $

$\Rightarrow x=4 \text { or } x=2^{-2}=\frac{1}{4}$



NCERT Chapter Video Solution

Dual Pane