Area Question 7

Question 7

  1. The tangent to the parabola $y^{2}=4 x$ at the point where it intersects the circle $x^{2}+y^{2}=5$ in the first quadrant, passes through the point (a) $\frac{1}{4}, \frac{3}{4}$ (b) $\frac{3}{4}, \frac{7}{4}$ (c) $-\frac{1}{3}, \frac{4}{3}$ (d) $-\frac{1}{4}, \frac{1}{2}$
Show Answer

Solution:

  1. Given equations of the parabola $y^{2}=4 x$ and circle

$$ x^{2}+y^{2}=5 $$

So, for point of intersection of curves (i) and (ii), put $y^{2}=4 x$ in Eq. (ii), we get

$$ \begin{array}{lc} & \ \Rightarrow & x^{2}+4 x-5=0 \ \Rightarrow & (x-1)(x+5)=0 \ \Rightarrow & x=1,-5 \end{array} $$

For first quadrant $x=1$, so $y=2$.

Now, equation of tangent of parabola (i) at point $(1,2)$ is $T=0$

$\Rightarrow \quad 2 y=2(x+1)$

$\Rightarrow \quad x-y+1=0$

The point $\frac{3}{4}, \frac{7}{4}$ satisfies, the equation of line

$$ x-y+1=0 $$



NCERT Chapter Video Solution

Dual Pane