Area Question 51

Question 51

  1. Find the area of the region bounded by the $X$-axis and the curves defined by $y=\tan x,-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$ and $y=\cot x, \frac{\pi}{6} \leq x \leq \frac{\pi}{3}$.

$(1984,4 M)$

Show Answer

Solution:

  1. Given, $y=\tan x,-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$ $\cot x, \quad \frac{\pi}{6} \leq x \leq \frac{\pi}{2}$

which could be plotted as $Y$-axis.

$\therefore$ Required area $=\int_{0}^{\pi / 4}(\tan x) d x+\int_{\pi / 4}^{\pi / 3}(\cot x) d x$

$=[-\log |\cos x|]{0}^{\pi / 4}+[\log \sin x]{\pi / 4}^{\pi / 3}$

$=-\log \frac{1}{\sqrt{2}}-0+\log \frac{\sqrt{3}}{2}-\log \frac{1}{\sqrt{2}}$

$=\log \frac{\sqrt{3}}{2}-2 \log \frac{1}{\sqrt{2}}$

$=\log \frac{\sqrt{3}}{2}-\log \frac{1}{2}=\frac{1}{2} \log _{e} 3$ sq units



NCERT Chapter Video Solution

Dual Pane