Area Question 48

Question 48

  1. Find the area bounded by the curves x2+y2=25,4y=|4x2| and x=0 above the X-axis.

(1987,6M)

Show Answer

Solution:

  1. Given curves, x2+y2=25,4y=|4x2| could be sketched as below, whose points of intersection are

x2+(4x2)216=25

(x2+24)(x216)=0

x=±4

Required area =20425x2dx024x24dx

$$ \begin{gathered} -\int_{2}^{4} \frac{x^{2}-4}{4} d x \ =2 \frac{x}{2} \sqrt{25-x^{2}}+\frac{25}{2} \sin ^{-1} \frac{x}{5}{ }{0}^{4} \ -\frac{1}{4} 4 x-\frac{x^{3}}{3}{ }{0}^{2}-\frac{1}{4} \frac{x^{3}}{3}-4 x_{2}^{4} \end{gathered} $$

=26+252sin14514883

1464316838

=26+252sin145434343

=4+25sin145 sq units



NCERT Chapter Video Solution

Dual Pane