Area Question 34

Question 34

  1. Find the area of the region bounded by the curves

$$ y=x^{2}, y=\left|2-x^{2}\right| \text { and } y=2 \text {, } $$

which lies to the right of the line $x=1$.

$(2002,5$ M)

Show Answer

Solution:

  1. The points in the graph are

$\therefore$ Required area

$$ \begin{aligned} & =\int_{1}^{\sqrt{2}}\left{x^{2}-\left(2-x^{2}\right)\right} d x+\int_{\sqrt{2}}^{2}\left{2-\left(x^{2}-2\right)\right} d x \ & =\int_{1}^{\sqrt{2}}\left(2 x^{2}-2\right) d x+\int_{\sqrt{2}}^{2}\left(4-x^{2}\right) d x \ & =\frac{2 x^{3}}{3}-2 x+4 x-\frac{x^{3}}{3} \ & =\frac{4 \sqrt{2}}{3}-2 \sqrt{2}-\frac{2}{3}+2+8-\frac{8}{3}-4 \sqrt{2}+\frac{2 \sqrt{2}}{3} \ & =\frac{20-12 \sqrt{2}}{3} \text { sq units } \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane