Area Question 3

Question 3

  1. The area (in sq units) of the region bounded by the curves y=2x and y=|x+1|, in the first quadrant is (a) 32 (b) loge2+32 (c) 12 (2019 Main, 10 April II) (d) 321loge2
Show Answer

Solution:

  1. Given, equations of curves

y=2x and y=|x+1|=x+1,x1 x1,x<1

The figure of above given curves is

In first quadrant, the above given curves intersect each other at (1,2).

So, the required area =01((x+1)2x)dx

$$ \begin{aligned} & =\frac{x^{2}}{2}+x-\frac{2^{x}}{\log {e} 2}{ }{0}^{1} \quad \because \int a^{x} d x=\frac{a^{x}}{\log _{e} a}+C \ & =\frac{1}{2}+1-\frac{2}{\log _{e} 2}+\frac{1}{\log _{e} 2} \ & =\frac{3}{2}-\frac{1}{\log _{e} 2} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane