Area Question 29

Question 29

  1. If $S$ be the area of the region enclosed by $y=e^{-x^{2}}, y=0, x=0$ and $x=1$. Then,

(2012) (a) $S \geq \frac{1}{e}$ (b) $S \geq 1-\frac{1}{e}$ (c) $S \leq \frac{1}{4} 1+\frac{1}{\sqrt{e}}$ (d) $S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}} 1-\frac{1}{\sqrt{2}}$

Show Answer

Solution:

  1. PLAN (i) Area of region $f(x)$ bounded between $x=a$ to $x=b$ is

$\int_{a}^{b} f(x) d x=$ Sum of areas of rectangle shown in shaded part.

(ii) If $f(x) \geq g(x)$ when defined in $[a, b]$, then

$$ \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x $$

Description of Situation As the given curve $y=e^{-x^{2}}$ cannot be integrated, thus we have to bound this function by using above mentioned concept.

Graph for $y=e^{-x^{2}}$

Since, $x^{2} \leq x$ when $x \in[0,1]$

$$ \begin{array}{lrlrl} & \Rightarrow & -x^{2} & \geq-x & \text { or } e^{-x^{2}} \geq e^{-x} \ & \therefore & & \int_{0}^{1} e^{-x^{2}} d x & \geq \int_{0}^{1} e^{-x} d x \ & \Rightarrow & & S & \geq-\left(e^{-x}\right)_{0}^{1}=1-\frac{1}{e} \end{array} $$

Also, $\int_{0}^{1} e^{-x^{2}} d x \leq$ Area of two rectangles

$$ \begin{aligned} & \leq 1 \times \frac{1}{\sqrt{2}}+1-\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{e}} \ & \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}} 1-\frac{1}{\sqrt{2}} \end{aligned} $$

$\therefore \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}} 1-\frac{1}{\sqrt{2}} \geq S \geq 1-\frac{1}{e} \quad$ [from Eqs. (i) and (ii)]



NCERT Chapter Video Solution

Dual Pane