Area Question 26

Question 26

  1. The area bounded by the curves $y=f(x)$, the $X$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4)$. Then, $f(x)$ is equal to

$(1982,2 \mathrm{M})$

(a) $(x-1) \cos (3 x+4)$

(b) $8 \sin (3 x+4)$

(c) $\sin (3 x+4)+3(x-1) \cos (3 x+4)$

(d) None of the above

Show Answer

Solution:

  1. Since, $\int_{1}^{b} f(x) d x=(b-1) \sin (3 b+4)$

On differentiating both sides w.r.t. $b$, we get

$$ f(b)=3(b-1) \cdot \cos (3 b+4)+\sin (3 b+4) $$

$\therefore f(x)=\sin (3 x+4)+3(x-1) \cos (3 x+4)$



NCERT Chapter Video Solution

Dual Pane