Area Question 24

Question 24

  1. The area bounded by the curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is

(2005, 1M) (a) $\frac{1}{3}$ sq unit (b) $\frac{2}{3}$ sq unit (c) $\frac{1}{4}$ sq unit (d) $\frac{1}{5}$ sq unit

Show Answer

Solution:

  1. The curves $y=(x-1)^{2}, y=(x+1)^{2}$ and $y=1 / 4$ are shown as

where, points of intersection are

$$ (x-1)^{2}=\frac{1}{4} \quad \Rightarrow \quad x=\frac{1}{2} \text { and }(x+1)^{2}=\frac{1}{4} \Rightarrow x=-\frac{1}{2} $$

i.e.

$$ Q \frac{1}{2}, \frac{1}{4} \quad \text { and } \quad R \quad-\frac{1}{2}, \frac{1}{4} $$

$\therefore \quad$ Required area $=2 \int_{0}^{1 / 2}(x-1)^{2}-\frac{1}{4} d x$

$$ \begin{aligned} & =2 \frac{(x-1)^{3}}{3}-\frac{1}{4} x^{1 / 2} \ & =2-\frac{1}{8 \cdot 3}-\frac{1}{8}–\frac{1}{3}-0 \quad=\frac{8}{24}=\frac{1}{3} \text { sq unit } \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane