Application of Derivatives 4 Question 60

####63. A vertical line passing through the point (h,0) intersects the ellipse x24+y23=1 at the points P and Q. If the tangents to the ellipse at P and Q meet at the point R.

If Δ(h)= area of the $\triangle P Q R, \Delta_{1}=\max {1 / 2 \leq h \leq 1} \Delta(h)and\Delta{2}=\min {1 / 2 \leq h \leq 1} \Delta(h),then\frac{8}{\sqrt{5}} \Delta{1}-8 \Delta_{2}$ is equal to (2013 Adv)

Show Answer

Solution:

  1. PLAN As to maximise or minimise area of triangle, we should find area in terms of parametric coordinates and use second derivative test.

Here, tangent at P(2cosθ,3sinθ) is

x2cosθ+y3sinθ=1R(2secθ,0)Δ= Area of PQR=12(23sinθ)(2secθ2cosθ)=23sin3θ/cosθ

When

14cosθ12

Δ1=Δmax occurs at cosθ=14=23sin3θcosθ

When cosθ=14=4558

Δ2=Δmin occurs at cosθ=12

=23sin3θcosθ

When cosθ=12=92

85Δ18Δ2=4536=9



NCERT Chapter Video Solution

Dual Pane