Application of Derivatives 4 Question 30

####32. The function f(x)=2|x|+|x+2|||x+2|2|x|| has a local minimum or a local maximum at x is equal to

(2013 Adv.)

(a) -2

(b) 23

(c) 2

(d) 2/3

Show Answer

Answer:

Correct Answer: 32. (a,b)

Solution:

  1. PLAN

 We know that, |x|=x, if x0x, if x<0|xa|=xa, if xa(xa), if x<a

and for non-differentiable continuous function, the maximum or minimum can be checked with graph as

Here, f(x)=2|x|+|x+2|||x+2|2|x|| 2x(x+2)+(x2), if when x2 2x+x+2+3x+2, if when 2<x2/3

=4x, if  when 23<x04x, if when 0<x22x+4, if  when x>22x4, if x22x+4, if 2<x2/3=4x, if 23<x04x, if 0<x22x+4, if x>2

Graph for y=f(x) is shown as



NCERT Chapter Video Solution

Dual Pane