Application of Derivatives 4 Question 26

####27. If P(x)=a0+a1x2+a2x4++anx2n is a polynomial in a real variable x with 0<a0<a1<a2<<an. Then, the function P(x) has

(1986,2M)

(a) neither a maximum nor a minimum

(b) only one maximum

(c) only one minimum

(d) only one maximum and only one minimum

Show Answer

Answer:

Correct Answer: 27. (a,c)

Solution:

  1. Given, P(x)=a0+a1x2+a2x4++anx2n where, an>an1>an2>>a2>a1>a0>0

P(x)=2a1x+4a2x3++2nanx2n1

=2x(a1+2a2x2++nanx2n2)

where, (a1+2a2x2+3a3x4++nanx2n2)>0,xR.

Thus,

P(x)>0, when x>0

P(x)<0, when x<0

i.e. P(x) changes sign from (ve) to (+ve) at x=0.

P(x) attains minimum at x=0.

Hence, it has only one minimum at x=0.



NCERT Chapter Video Solution

Dual Pane