Application of Derivatives 4 Question 24

####25. On the interval [0,1], the function x25(1x)75 takes its maximum value at the point

(1995, 1M)

(a) 0

(b) 1/4

(c) 1/2

(d) 1/3

Show Answer

Answer:

Correct Answer: 25. (b)

Solution:

  1. Let f(x)=x25(1x)75,x[0,1]

f(x)=25x24(1x)7575x25(1x)74=25x24(1x)74[(1x)3x]=25x24(1x)74(14x)

For maximum value of f(x), put f(x)=0

25x24(1x)74(14x)=0x=0,1,14 Also, at x=0,y=0 At x=1,y=0 and at x=1/4,y>0

f(x) attains maximum at x=1/4.



NCERT Chapter Video Solution

Dual Pane