Application of Derivatives 4 Question 24

####25. On the interval $[0,1]$, the function $x^{25}(1-x)^{75}$ takes its maximum value at the point

(1995, 1M)

(a) 0

(b) $1 / 4$

(c) $1 / 2$

(d) $1 / 3$

Show Answer

Answer:

Correct Answer: 25. (b)

Solution:

  1. Let $f(x)=x^{25}(1-x)^{75}, x \in[0,1]$

$ \begin{aligned} \Rightarrow \quad f^{\prime}(x) & =25 x^{24}(1-x)^{75}-75 x^{25}(1-x)^{74} \\ & =25 x^{24}(1-x)^{74}[(1-x)-3 x] \\ & =25 x^{24}(1-x)^{74}(1-4 x) \end{aligned} $

For maximum value of $f(x)$, put $f^{\prime}(x)=0$

$ \begin{array}{ll} \Rightarrow & 25 x^{24}(1-x)^{74}(1-4 x)=0 \\ \Rightarrow & x=0,1, \frac{1}{4} \\ \text { Also, at } & x=0, y=0 \\ \text { At } & x=1, y=0 \\ \text { and at } & x=1 / 4, y>0 \end{array} $

$\therefore f(x)$ attains maximum at $x=1 / 4$.



NCERT Chapter Video Solution

Dual Pane