Application of Derivatives 2 Question 29

####29. Let f(x)=xeax,x0x+ax2x3,x>0

where, a is a positive constant. Find the interval in which f(x) is increasing.

(1996, 3M)

Show Answer

Answer:

Correct Answer: 29. (c, d)

Solution:

  1. NOTE This type is asked in 1983 and repeat after 13 years.

At x=0, LHL =limx0f(x)=limx0xeax=0 and RHL =limx0+f(x)=limx0+(x+ax2x3)=0

Therefore, LHL=RHL=0=f(0)

So, f(x) is continuous at x=0.

Also, f(x)=1eax+axeax, if x<01+2ax3x2, if x>0

and Lf(0)=limx0f(x)f(0)x0

=limx0xeax0x=limx0eax=e0=1

and

Rf(0)=limx0+f(x)f(0)x+0=limx0+x+ax2x30x=limx0+1+axx2=1

Therefore, Lf(0)=Rf(0)=1f(0)=1 Hence, f(x)=(ax+1)eax, if x<01, if x=01+2ax3x2, if x>0

Now, we can say without solving that, f(x) is continuous at x=0 and hence on R. We have,

and

f(x)=aeax+a(ax+1)eax, if x<02a6x, if x>0

Lf(0)=limx0f(x)f(0)x0

=limx0(ax+1)eax1x

=limx0aeax+eax1x=limx0aeax+alimx0eax1ax=ae0+a(1)=2a

and

Rf(0)=limx0+f(x)f(0)x+0=limx0+(1+2ax3x2)1x=limx0+2ax3x2x=limx0+2a3x=2a

Therefore, Lf(0)=Rf(0)=2a

Hence, f(x)=a(ax+2)eax, if x<02a, if x=02a6x, if x>0

Now, for x<0,f(x)>0, if ax+2>0

For x<0,f(x)>0, if x>2/a

f(x)>0, if 2a<x<0

and for x>0,f(x)>0, if 2a6x>0

for x>0,f(x)>0, if x<a/3

Thus, f(x) increases on [2/a,0] and on [0,a/3].

Hence, f(x) increases on 2a,a3.



NCERT Chapter Video Solution

Dual Pane