Application of Derivatives 2 Question 16

####16. Let $f$ and $g$ be increasing and decreasing functions respectively from $[0, \infty)$ to $[0, \infty)$ and $h(x)=f{g(x)}$. If $h(0)=0$, then $h(x)-h(1)$ is

$(1987,2 M)$

(a) always negative

(b) always positive

(c) strictly increasing

(d) None of these

Objective Questions II

(One or more than one correct option)

Show Answer

Answer:

Correct Answer: 16. (c)

Solution:

  1. Let $F(x)=h(x)-h(1)=f{g(x)}-f{g(1)}$

$ \begin{aligned} \therefore \quad F^{\prime}(x) & =f^{\prime}{g(x)} \cdot g^{\prime}(x) \\ & =(+)(\rightarrow)=-\mathrm{ve} \end{aligned} $

[since, $f(x)$ is an increasing function $f^{\prime}(g(x))$ is + ve and $g(x)$ is decreasing function $g^{\prime}(f(x))$ is $\rightarrow$ ve ]

Since, $\quad f^{\prime}(x)$ is -ve.

$\therefore f(x)$ is decreasing function.

When

$0 \leq x<1$

$\Rightarrow$

$ h(x)-h(1)=+\mathrm{ve} $

When

$x \geq 1$,

$\Rightarrow$

$ h(x)-h(1)=-\mathrm{ve} $

Hence, for $x>0$,

$h(x)-h(1)$ is neither always positive nor always negative, so it is not strictly increasing throughout.

Therefore, option (d) is the answer.



NCERT Chapter Video Solution

Dual Pane