Application of Derivatives 2 Question 11

####11. For all x(0,1)

(2000, 1M)

(a) ex<1+x

(b) loge(1+x)<x

(c) sinx>x

(d) logεx>x

Show Answer

Answer:

(c)

Solution:

  1. PLAN Inequation based upon uncompatible function. This type of inequation can be solved by calculus only.

Option (a) Let f(x)=ex1x.

then f(x)=ex1>0,x(0,1)

f(x) increase in (0,1)

f(x)>f(0) for 0<x<1

ex1x>0 or ex>1+x for 0<x<1 Option (b) Let g(x)=loge(1+x)x,0<x<1

g(x)=11+x1=x1+x<0 for 0<x<1g(x) decreases  for 0<x<1g(x)<g(0) for 0<x<1loge(1+x)x<0 for 0<x<1 or loge(1+x)<x for 0<x<1

Therefore, option (b) is the answer.

Option sinx>x

 Let h(x)=sinxxh(x)=cosx1

For x(0,1),cosx1<0

h(x) is decreasing function.

h(x)<h(0)

sinxx<0

sinx<x, which is not true. 

Option (d) p(x)=logxx

p(x)=1x1>0,x(0,1)

Therefore, p(x) is an increasing function.

p(0)<p(x)<p(1)<logxx<1logxx<0logx<x

Therefore, option (d) is not the answer.



NCERT Chapter Video Solution

Dual Pane