Application of Derivatives 1 Question 21

####21. Find all the tangents to the curve $y=\cos (x+y)$, $-2 \pi \leq x \leq 2 \pi$, that are parallel to the line $x+2 y=0$.

$(1985,5 \mathrm{M})$

Show Answer

Answer:

($x+2y= \frac {\pi}{2} \text {and} x+2y= \frac {-3 \pi}{2}$)

Solution:

  1. Given, $y=\cos (x+y)$

$\Rightarrow \quad \frac{d y}{d x}=-\sin (x+y) \cdot 1+\frac{d y}{d x}$

Since, tangent is parallel to $x+2 y=0$,

then slope $\frac{d y}{d x}=-\frac{1}{2}$

From Eq. (i), $-\frac{1}{2}=-\sin (x+y) \cdot 1-\frac{1}{2}$

$\Rightarrow \quad \sin (x+y)=1$, which shows $\cos (x+y)=0$.

$\therefore \quad y=0$

$ \begin{aligned} \Rightarrow & x+y & =\frac{\pi}{2} \text { or } & -\frac{3 \pi}{2} \\ \therefore & x & =\frac{\pi}{2} \text { or } & -\frac{3 \pi}{2} \end{aligned} $

Thus, required points are $\frac{\pi}{2}, 0$ and $-\frac{3 \pi}{2}, 0$

$\therefore$ Equation of tangents are

$ \frac{y-0}{x-\pi / 2}=-\frac{1}{2} $

and

$ \frac{y-0}{x+3 \pi / 2}=-\frac{1}{2} \Rightarrow 2 y=-x+\frac{\pi}{2} $

and

$ 2 y=-x-\frac{3 \pi}{2} $

$\Rightarrow \quad x+2 y=\frac{\pi}{2}$

and

$ x+2 y=-\frac{3 \pi}{2} $

are the required equations of tangents.



NCERT Chapter Video Solution

Dual Pane