Application of Derivatives 1 Question 20

####20. Find the equation of the normal to the curve y=(1+x)y+sin1(sin2x) at x=0.

(1993, 4M)

Show Answer

Answer:

(y+x1=0)

Solution:

  1. Given, y=(1+x)y+sin1(sin2x)

Let y=u+v, where u=(1+x)y,v=sin1(sin2x).

On differentiating w.r.t. x, we get

dydx=dudx+dvdx

Now,

u=(1+x)y

On taking logarithm both sides, we get

logeu=yloge(1+x)

1ududx=y1+x+dydxloge(1+x)dudx=(1+x)yy1+x+dydxloge(1+x)

Again, v=sin1(sin2x)

sinv=sin2x

cosvdvdx=2sinxcosx

dvdx=1cosv(2sinxcosx)

dvdx=2sinxcosx1sin2v=2sinxcosx1sin4x

From Eq. (i),

dydx=(1+x)yy1+x+dydxloge(1+x)+2sinxcosx1sin4xdydx=y(1+x)y1+2sinxcosx/1sin4x1(1+x)yloge(1+x)

At x=0,

y=(1+0)y+sin1sin(0)=1dydx=1(1+0)11+2sin0cos0/(1sin40)1(1+0)1loge(1+0)dydx=1

Again, the slope of the normal is

m=1dy/dx=1

Hence, the required equation of the normal is

y1=(1)(x0) i.e. y+x1=0



NCERT Chapter Video Solution

Dual Pane