Application of Derivatives 1 Question 11

####11. The point(s) on the curve y3+3x2=12y, where the tangent is vertical, is (are)

(2002, 2M)

(a) ±43,2

(b) ±113,0

(c) (0,0)

(d) ±43,2

Show Answer

Answer:

Correct Answer: 11. 1:16

Solution:

  1. Given, y3+3x2=12y

On differentiating w.r.t. x, we get

3y2dydx+6x=12dydxdydx=6x123y2

dxdy=123y26x

For vertical tangent, dxdy=0

123y2=0y=±2

On putting, y=2 in Eq. (i), we get x=±43 and again putting y=2 in Eq. (i), we get 3x2=16, no real solution.

So, the required point is ±43,2.



NCERT Chapter Video Solution

Dual Pane