Application of Derivatives 1 Question 1

####1. If the tangent to the curve y=xx23,xR,(x±3), at a point (α,β)(0,0) on it is parallel to the line 2x+6y11=0, then

(2019 Main, 10 April II)

(a) |6α+2β|=19

(b) |6α+2β|=9

(c) |2α+6β|=19

(d) |2α+6β|=11

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. Equation of given curve is

y=xx23,xR,(x±3)

On differentiating Eq. (i) w.r.t. x, we get

dydx=(x23)x(2x)(x23)2=(x23)(x23)2

It is given that tangent at a point (α,β)(0,0) on it is parallel to the line

2x+6y11=0.

Slope of this line =26=dydx|(α,β)

α2+3(α23)2=13

3α2+9=α46α2+9

α49α2=0

α=0,3,3

α=3 or 3,[α0]

Now, from Eq. (i),

β=αα23β=393 or 393=12 or 12

According to the options, |6α+2β|=19

at (α,β)=±3,±12



NCERT Chapter Video Solution

Dual Pane