3D Geometry 3 Question 23

####23. On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane, $x+y+z=2$ ?

(2019 Main, 10 Jan II)

(a) $\frac{x-4}{1}=\frac{y-5}{1}=\frac{z-5}{-1}$

(b) $\frac{x+3}{3}=\frac{4-y}{3}=\frac{z+1}{-2}$

(c) $\frac{x-2}{2}=\frac{y-3}{2}=\frac{z+3}{3}$

(d) $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$

Show Answer

Answer:

(d)

Solution:

  1. Given equation of line is

$ \begin{aligned} & \frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}=r(\text { let }) \\ & \Rightarrow x=2 r+4 ; y=2 r+5 \text { and } z=r+3 \end{aligned} $

$\therefore$ General point on the line (i) is

$ P(2 r+4,2 r+5, r+3) $

So, the point of intersection of line (i) and plane $x+y+z=2$ will be of the form $P(2 r+4,2 r+5, r+3)$ for some $r \in R$.

$\Rightarrow(2 r+4)+(2 r+5)+(r+3)=2$

$[\because$ the point will lie on the plane]

$\Rightarrow 5 r=-10 \Rightarrow r=-2$

So, the point of intersection is $P(0,1,1)$

[putting $r=-2$ in $(2 r+4,2 r+5, r+3)$ ]

Now, on checking the options, we get

$\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$ contain the point $(0,1,1)$



NCERT Chapter Video Solution

Dual Pane