Chemical Kinetics - Result Question 69

####68. From the following data for the reaction between $A$ and $B$

$[\boldsymbol{A}],(mol / L)$ $[\boldsymbol{B}],(mol / L)$ Initial rate $\left(mol L^{-1} s^{-1}\right)$ at
$\mathbf{3 0 0} \mathbf{~ K}$ $\mathbf{3 2 0} \mathbf{~ K}$
$2.5 \times 10^{-4}$ $3.0 \times 10^{-5}$ $5.0 \times 10^{-4}$ $2.0 \times 10^{-3}$
$5.0 \times 10^{-4}$ $6.0 \times 10^{-5}$ $4.0 \times 10^{-3}$ -
$1.0 \times 10^{-3}$ $6.0 \times 10^{-5}$ $1.6 \times 10^{-2}$ -

Calculate

(i) the order of the reaction with respect to $A$ and with respect to $B$.

(ii) the rate constant at $300 K$.

(iii) the pre-exponential factor.

(1994, 5M)

Show Answer

Solution:

  1. Comparing the data of experiment number 2 and 3 :

$$ \frac{R _3}{R _2}=\frac{1.6 \times 10^{-2}}{4 \times 10^{-3}}=\left(\frac{1.0 \times 10^{-3}}{5 \times 10^{-4}}\right)^{m} $$

$\Rightarrow$

$$ m=2 \text {, order w.r.t. } A $$

Now comparing the data of experiment number 1 and 2 :

$$ \begin{aligned} & \frac{R _2}{R _1}=\frac{4 \times 10^{-3}}{5 \times 10^{-4}}=\left(\frac{5 \times 10^{-4}}{2.5 \times 10^{-4}}\right)^{2}\left(\frac{6.0 \times 10^{-5}}{3.0 \times 10^{-5}}\right)^{n} \ & \Rightarrow \quad 8=(2)^{2}(2)^{n} \Rightarrow n=1, \text { order w.r.t. } B . \end{aligned} $$

(i) Order with respect to $A=2$, order with respect to $B=1$.

(ii) At $300 K, R=k[A]^{2}[B]$

$$ \begin{aligned} \Rightarrow \quad k & =\frac{R}{[A]^{2}[B]}=\frac{5.0 \times 10^{-4}}{\left(2.5 \times 10^{-4}\right)^{2}\left(3.0 \times 10^{-5}\right)} \ & =2.66 \times 10^{8} s^{-1} L^{2} mol^{-2} \end{aligned} $$

(iii) From first experiment :

Rate $(320 K)=k(320 K)\left(2.5 \times 10^{-4}\right)^{2}\left(3.0 \times 10^{-5}\right)$

$$ \begin{gathered} \Rightarrow \quad k(320 K)=\frac{2 \times 10^{-3}}{\left(2.5 \times 10^{-4}\right)^{2}\left(3.0 \times 10^{-5}\right)} \ =1.066 \times 10^{9} s^{-1} L^{2} mol^{-2} . \ \Rightarrow \quad \ln {\frac{k(320 K)}{k(300 K)} }=\frac{E _a}{R}\left(\frac{T _2-T _1}{T _1 T _2}\right) \ \Rightarrow \quad \ln \left(\frac{1.066 \times 10^{9}}{2.66 \times 10^{8}}\right)=\frac{E _a}{8.314}\left(\frac{20}{300 \times 320}\right) \ \Rightarrow \quad E _a=55.42 kJ mol^{-1} \end{gathered} $$

$$ \text { Now } \quad \ln k=\ln A-\frac{E _a}{R T} $$

At $300 K: \ln \left(2.66 \times 10^{8}\right)=\ln A-\frac{55.42 \times 10^{3}}{8.314 \times 300}$

Solving : $\quad \ln A=41.62 \Rightarrow A=1.2 \times 10^{18}$



NCERT Chapter Video Solution

Dual Pane