Chemical Kinetics - Result Question 68

####67. At $380^{\circ} C$, the half-life period for the first order decomposition of $H _2 O _2$ is $360 min$. The energy of activation of the reaction is $200 kJ mol^{-1}$. Calculate the time required for $75 %$ decomposition at $450^{\circ} C$.

(1995, 4M)

Show Answer

Answer:

Correct Answer: 67. $(1.386 min)$

Solution:

  1. For 1 st order reaction :

$$ \begin{gathered} k \propto \frac{1}{t _{1 / 2}} \ \Rightarrow \quad \ln {\frac{k\left(450^{\circ} C\right)}{k\left(380^{\circ} C\right)} }=\ln {\frac{t _{1 / 2}\left(380^{\circ} C\right)}{t _{1 / 2}\left(450^{\circ} C\right)} }=\frac{E _a}{R}\left(\frac{450-380}{727 \times 653}\right) \ \Rightarrow \quad \ln {\frac{360}{t _{1 / 2}\left(450^{\circ} C\right)} }=\frac{200 \times 10^{3}}{8.314} \times \frac{70}{727 \times 653}=3.54 \ \Rightarrow \quad t _{1 / 2}\left(450^{\circ} C\right)=10.37 min \ \Rightarrow \quad \text { Time for } 75 % \text { reaction at } 450^{\circ} C \ \quad=2 \times t _{1 / 2}=2 \times 10.37=20.74 min \end{gathered} $$



NCERT Chapter Video Solution

Dual Pane