Chemical Kinetics - Result Question 12

####13. For an elementary chemical reaction, $A _2 \underset{k _{-1}}{\stackrel{k _1}{\rightleftharpoons}} 2 A$, the expression for $\frac{d[A]}{d t}$ is

(a) $2 k _1\left[A _2\right]-k _{-1}[A]^{2}$

(b) $k _1\left[A _2\right]-k _{-1}[A]^{2}$

(c) $2 k _1\left[A _2\right]-2 k _{-1}[A]^{2}$

(d) $k _1\left[A _2\right]+k _{-1}[A]^{2}$

Show Answer

Answer:

Correct Answer: 13. (c)

Solution:

  1. The elementary reaction, $A _2 \underset{k _{-1}}{\stackrel{k _1}{\rightleftharpoons}} 2 A$

follows opposing or reversible kinetics,

(i) Rate of the reaction,

$$ \begin{aligned} r & =r _{\text {forward }}-r _{\text {backward }} \ & =k _1\left[A _2\right]-k _{-1}[A]^{2} \end{aligned} $$

(ii) Again, rate of the reaction can be expressed as,

$$ r=-\frac{d\left[A _2\right]}{d t}=+\frac{1}{2} \frac{d[A]}{d t} $$

So, the rate of appearance of $A$, i.e.

$\frac{d[A]}{d t}=2 r=2 k _1\left[A _2\right]-2 k _{-1}[A]^{2}$ [from Eq. (i)]



NCERT Chapter Video Solution

Dual Pane