Determinants

4.3 EXERCISE

Short Answer (S.A.)

Using the properties of determinants in Exercises 1 to 6, evaluate:

1. $ \begin{vmatrix} x^{2}-x+1 & x-1 \\ x+1 & x+1\end{vmatrix} $

2. $ \begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{vmatrix} $

3. $ \begin{vmatrix} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0\end{vmatrix} $

4. $ \begin{vmatrix} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z\end{vmatrix} $

5. $ \begin{vmatrix} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4\end{vmatrix} $

6. $ \begin{vmatrix} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{vmatrix} $

Using the proprties of determinants in Exercises 7 to 9, prove that:

7. $ \begin{vmatrix} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y\end{vmatrix} =0$

8. $ \begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y\end{vmatrix} =4 x y z$

9. $ \begin{vmatrix} a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{vmatrix} =(a-1)^{3}$

10. If $A+B+C=0$, then prove that $ \begin{vmatrix} 1 & \cos C & \cos B \\ \cos C & 1 & \cos A \\ \cos B & \cos A & 1\end{vmatrix} =0$

11. If the co-ordinates of the vertices of an equilateral triangle with sides of length ’ $a$ ’ are $\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)$, then $\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right|^2=\frac{3 a^4}{4}$.

12. Find the value of $\theta$ satisfying $\left[\begin{array}{ccc}1 & 1 & \sin 3 \theta \\ -4 & 3 & \cos 2 \theta \\ 7 & -7 & -2\end{array}\right]=0$.

13. If $\left[\begin{array}{ccc}4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x\end{array}\right]=0$, then find values of $x$.

14. If $a_1, a_2, a_3, \ldots, a_r$ are in G.P., then prove that the determinant $ \begin{vmatrix} a _{r+1} & a _{r+5} & a _{r+9} \\ a _{r+7} & a _{r+11} & a _{r+15} \\ a _{r+11} & a _{r+17} & a _{r+21}\end{vmatrix} $ is independent of $r$.

15. Show that the points $(a+5, a-4),(a-2, a+3)$ and $(a, a)$ do not lie on a straight line for any value of $a$.

16. Show that the $\triangle ABC$ is an isosceles triangle if the determinant

$ \Delta=\begin{bmatrix} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{bmatrix} =0 . $

17. Find $A^{-1}$ if $A=\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{bmatrix} $ and show that $A^{-1}=\frac{A^{2}-3 I}{2}$.

Long Answer (L.A.)

18. If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$, find $A^{-1}$.

Using $\mathrm{A}^{-1}$, solve the system of linear equations $x-2 y=10,2 x-y-z=8,-2 y+z=7$.

19. Using matrix method, solve the system of equations $3 x+2 y-2 z=3, x+2 y+3 z=6,2 x-y+z=2$.

20. Given $\mathrm{A}=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$, find $\mathrm{BA}$ and use this to solve the system of equations $y+2 z=7, x-y=3,2 x+3 y+4 z=17$.

21. If $a+b+c \neq 0$ and $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$, then prove that $a=b=c$.

22. Prove that $\left|\begin{array}{lll}b c-a^2 & c a-b^2 & a b-c^2 \\ c a-b^2 & a b-c^2 & b c-a^2 \\ a b-c^2 & b c-a^2 & c a-b^2\end{array}\right|$ is divisible by $a+b+c$ and find the quotient.

23. If $x+y+z=0$, prove that $ \begin{vmatrix} x a & y b & z c \\ y c & z a & x b \\ z b & x c & y a\end{vmatrix} =x y z \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a\end{vmatrix} $

Objective Type Questions (M.C.Q.)

Choose the correct answer from given four options in each of the Exercises from 24 to 37.

24. If $ \begin{vmatrix} 2 x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3\end{vmatrix} $, then value of $x$ is

(A) 3

(B) $\pm 3$

(C) $\pm 6$

(D) 6

25. The value of determinant $ \begin{vmatrix} a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c\end{vmatrix} $

(A) $\quad a^{3}+b^{3}+c^{3}$

(B) $3 b c$

(C) $a^{3}+b^{3}+c^{3}-3 a b c$

(D) none of these

26. The area of a triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 sq. units. The value of $k$ will be

(A) 9

(B) 3

(C) -9

(D) 6

27. The determinant $ \begin{vmatrix} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2}\end{vmatrix} $ equals

(A) $ a b c(b-c)(c-a)(a-b)$

(B) $(b-c)(c-a)(a-b)$

(C) $(a+b+c)(b-c)(c-a)(a-b)$

(D) None of these

28. The number of distinct real roots of $ \begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{vmatrix} =0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

(A) 0

(B) 2

(C) 1

(D) 3

29. If A, B and C are angles of a triangle, then the determinant

$ \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix} \text{ is equal to } $

(A) 0

(B) -1

(C) 1

(D) None of these

30. Let $f(t)= \begin{vmatrix} \cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t\end{vmatrix} $, then $\lim _{t \to 0} \frac{f(t)}{t^{2}}$ is equal to

(A) 0

(B) $ -1$

(C) 2

(D) 3

31. The maximum value of $\Delta= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1+\cos \theta & 1 & 1\end{vmatrix} $ is $(\theta$ is real number)

(A) $\frac{1}{2}$

(B) $\frac{\sqrt{3}}{2}$

(C) $\sqrt{2}$

(D) $\frac{2 \sqrt{3}}{4}$

32. If $f(x)= \begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{vmatrix} $, then

(A) $\quad f(a)=0$

(B) $\quad f(b)=0$

(C) $\quad f(0)=0$

(D) $\quad f(1)=0$

33. If A=$\left[\begin{array}{ccc}2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3\end{array}\right]$ , then $A^{-1}$ exists if

(A) $\quad \lambda=2$

(B) $\quad \lambda \neq 2$

(C) $\quad \lambda \neq-2$

(D) None of these

34. If $A$ and $B$ are invertible matrices, then which of the following is not correct?

(A) $ adj A=|A| \cdot A^{-1}$

(B) $ det(A)^{-1}=[det(A)]^{-1}$

(C) $(AB)^{-1}=B^{-1} A^{-1}$

(D) $ (A+B)^{-1}=B^{-1}+A^{-1}$

35. If $x, y, z$ are all different from zero and $ \begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{vmatrix} =0$, then value of $x^{-1}+y^{-1}+z^{-1}$ is

(A) $x y z$

(B) $x^{-1} y^{-1} z^{-1}$

(C) $-x-y-z$

(D) -1

36. The value of the determinant $ \begin{vmatrix} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{vmatrix} $ is

(A) $9 x^{2}(x+y)$

(B) $9 y^{2}(x+y)$

(C) $3 y^{2}(x+y)$

(D) $7 x^{2}(x+y)$

37. There are two values of $a$ which makes determinant, $\Delta= \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a\end{vmatrix} =86$, then sum of these number is

(A) 4

(B) 5

(C) -4

(D) 9

Fill in the blanks

38. If $A$ is a matrix of order $3 \times 3$, then $|3 A|=$____________

39. If $A$ is invertible matrix of order $3 \times 3$, then $|A^{-1}|$____________

40. If $x, y, z \in R$, then the value of determinant $ \begin{vmatrix} (2^{x}+2^{-x})^{2} & (2^{x}-2^{-x})^{2} & 1 \\ (3^{x}+3^{-x})^{2} & (3^{x}-3^{-x})^{2} & 1 \\ (4^{x}+4^{-x})^{2} & (4^{x}-4^{-x})^{2} & 1\end{vmatrix} $ is equal to____________

41. If $\cos 2 \theta=0$, then $ \begin{vmatrix} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta\end{vmatrix} ^{2}=$____________

42. If $A$ is a matrix of order $3 \times 3$, then $(A^{2})^{-1}=$____________

43. If $A$ is a matrix of order $3 \times 3$, then number of minors in determinant of $A$ are____________

44. The sum of the products of elements of any row with the co-factors of corresponding elements is equal to____________

45. If $x=-9$ is a root of $ \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{vmatrix} =0$, then other two roots are____________

46. $ \begin{vmatrix} 0 & x y z & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0\end{vmatrix} =$____________

47. If $f(x)= \begin{vmatrix} (1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{vmatrix} =A+B x+C x^{2}+\ldots$, then $A=$____________

State True or False for the statements of the following Exercises:

48. $(A^{3})^{-1}=(A^{-1})^{3}$, where $A$ is a square matrix and $|A| \neq 0$.

49. $(a A)^{-1}=\frac{1}{a} A^{-1}$, where $a$ is any real number and $A$ is a square matrix.

50. $|A^{-1}| \neq|A|^{-1}$, where $A$ is non-singular matrix.

51. If $A$ and $B$ are matrices of order 3 and $|A|=5,|B|=3$, then $|3 AB|=27 \times 5 \times 3=405$.

52. If the value of a third order determinant is 12 , then the value of the determinant formed by replacing each element by its co-factor will be 144 .

53. $ \begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{vmatrix} =0$, where $a, b, c$ are in A.P.

54. $|adj . A|=|A|^{2}$, where $A$ is a square matrix of order two.

55. The determinant $ \begin{vmatrix} \sin A & \cos A & \sin A+\cos B \\ \sin B & \cos A & \sin B+\cos B \\ \sin C & \cos A & \sin C+\cos B\end{vmatrix} $ is equal to zero.

56. If the determinant $ \begin{vmatrix} x+a & p+u & l+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{vmatrix} $ splits into exactly K determinants of order 3, each element of which contains only one term, then the value of $K$ is 8 .

57. Let $\Delta= \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} =16$, then $\Delta_1= \begin{vmatrix} p+x & a+x & a+p \\ q+y & b+y & b+q \\ r+z & c+z & c+r\end{vmatrix} =32$.

58. The maximum value of $ \begin{vmatrix} 1 & 1 & 1 \\ 1 & (1+\sin \theta) & 1 \\ 1 & 1 & 1+\cos \theta\end{vmatrix} $ is $\frac{1}{2}$.

SOLUTIONS

1. $x^{3}-x^{2}+2$

2. $a^{2}(a+x+y+z)$

3. $2 x^{3} y^{3} z^{3}$

4. $3(x+y+z)(x y+y z+z x)$

5. $16(3 x+4)$

6. $(a+b+c)^{3}$

12. $\theta=n \pi \quad$ or $n \pi+(-1)^{n} \ \big(\frac{\pi}{6}\big)$

13. $x=0,-12$

18. $x=0, y=-5, z=-3$

19. $x=1, y=1, z=1$

20. $x=2, y=-1, z=4$

24. C

25. C

26. B

27. D

28. C

29. A

30. A

31. A

32. C

33. D

34. D

35. D

36. B

37. C

38. $27|A|$

39. $\frac{1}{|A|}$

40. Zero

41. $\frac{1}{2}$

42. $(A^{-1})^{2}$

43. 9

44. Value of the determinant

45. $x=2 y=7$

46. $(y-z)(z-x)(y-x+x y z)$

47. Zero

48. True

49. False

50. False

51. True

52. True

53. True

54. False

55. True

56. True

57. True

58. True



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane