Statistics

Short Answer Type Questions

1. Find the mean deviation about the mean of the distribution.

Show Answer

Solution

Size 20 214 22 24
Frequency 6 5 4
Size Frequency fixi di=|xix| fidi
20 6 120 1.65 9.90
21 4 84 0.65 2.60
22 5 110 0.35 1.75
23 1 23 1.35 1.35
24 4 96 2.35 9.40
Total 20 433 25
x¯=fixifi=43320=21.65
MD=fi|xix¯|fi=2520=1.25

2. Find the mean deviation about the median of the following distribution.

Marks obtained 10 11 12 14 15
Number of students 2 3 8 3 4
Show Answer

Solution

Marks obtained fi cf di=∣xiMe f_id_i
10 2 2 2 4
11 3 5 1 3
12 8 13 0 0
14 3 16 2 6
15 4 20 3 12
Total fi=20 fidi=25

 Now, Me=20+12 th item =212=10.5 th item Me=12MD=fidifi=2520=1.25

3. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.

Show Answer

Solution

Consider first natural number when n is an odd i.e., 1, 2, 3, 4, … n, [odd].

 Mean x¯=1+2+3++nn=n(n+1)2n=n+12 MD =|1n+12|+|2n+12|+|3n+12|++|nn+12|n=+|n+12n+12|+|n+32n+12|++|n+12|+|2n+12|++|n12n+12|+|nn+12|n=2n1+2++n32+n12n12 terms =2nn12n12+12 sum of first n natural numbers =n(n+1)2=2n12n12n+12=1nn214=n214n

4. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.

Show Answer

Solution

Consider first n natural number, when n is even i.e., 1,2,3,4,.n.

 Mean x¯=1+2+3++nn=n(n+1)2n=n+12MD=1n|1n+12|+|2n+12|+|3n+12|+|n22n+12|+|n2n+12|+|n+22n+12|++|nn+12|=1n|1n2|+|3n2|+|5n2|+.+|32|+|12|++|n12|=2n12+32+.+n12n2 terms =1nn22[ sum of first n natural numbers =n2]=1nn24=n4

5. Find the standard deviation of first n natural numbers.

Show Answer

Solution

xi 1 2 3 4 5 n
(xi)2 1 4 9 16 25 n2

 Now, Σxi=1+2+3+4++n=n(n+1)2 and xi2=12+22+32++n2=n(n+1)(2n+1)6=xi2Nxi2N=n(n+1)(2n+1)6nn2(n+1)24n2=(n+1)(2n+1)6(n+1)24=2(2n2+3n+1)3(n2+2n+1)12=4n2+6n+23n26n312=n2112

6. The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results

Number of observation =25, mean =18.2s, standard, deviation =3.25s Further, another set of 15 observations x1x2x15, also in seconds, is now available and we have i=115xi=279 and i=115xi2=5524. Calculate the standard derivation based on all 40 observations.

Show Answer

Solution

Given,

ni=25,x¯i=18.2,σ1=3.25

n2=15,i=115xi=279 and i=115xi2=5524

For first set,

xi=25×18.2=455σ12=xi225(18.2)2252=xi225331.241.24=xi225Σxi2=25×(10.5625)=25×341.8025=8545.0625

σ12=Σxi225(18.2)2(3.25)2=Σxi225331.2410.5625+331.24=Σxi225Σxi2=25×(10.5625+331.24)

For combined SD of the 40 observations n=40,

 Now Σxi2=5524+8545.0625=14069.0625 and Σxi=455+279=734SD=14069.062540734402=351.726(18.35)2=351.726336.7225=15.0035=3.87

7. The mean and standard deviation of a set of n1 observations are x¯1 and s1, respectively while the mean and standard deviation of another set of n2 observations are x¯2 and s2, respectively. Show that the standard deviation of the combined set of (n1+n2) observations is given by

SD=n1(s1)2+n2(s2)2n1+n2+n1n2(x¯1x¯2)2(n1n2)2

Show Answer

Solution

Let

xi,i=1,2,3,n1 and yj,j=1,2,3,,n2

x¯1=1n1i=1n1xi and x¯2=1n2j=1n2yj

σ12=1n1i=1n1(xix¯1)2

and

σ22=1n2j=1n(yjx¯2)2

Now, mean x¯ of the given series is given by

x¯=1n1+n2i=1n1xi+j=1n2yj=n1x¯1+n2x¯2n1+n2

The variance σ2 of the combined series is given by

σ2=[1n1+n2i=1n1(xix¯)2+j=1n2(yjx¯)2]

Now,

i=1n1(xix¯)2=i=1n1(xix¯jx¯)2

But i=1n1(xix¯i)=0

[algebraic sum of the deviation of values of first series from their mean is zero]

Also,

i=1n1(xix¯)2=n1s12+n1(x¯1x¯)2=n1s12+n1d12

Where,

d1=(x¯1x¯)

Similarly, j=1n2(yjx¯)2=j=1n2(yjx¯i+x¯ix¯)2=n2s22+n2d22

where,

d2=x¯2x¯

Combined SD

σ=[n1(s12+d12)+n2(s22+d22)]n1+n2

where,

d1=x¯1x¯=x¯1n1x¯1+n2x¯2n1+n2=n2(x¯1x¯2)n1+n2

and

d2=x¯2x¯=x¯2n1x¯1+n2x¯2n1+n2=n1(x¯2x¯1)n1+n2

σ2=1n1+n2n1s12+n2s22+n1n2(x¯1x¯2)2(n1+n2)2+n2n1(x¯2x¯1)2(n1+n2)2

Also,

σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

8. Two sets each of 20 observations, have the same standard deviation 5. The first set has a mean 17 and the second mean 22 .

Determine the standard deviation of the x sets obtained by combining the given two sets.

Show Answer

Solution

Given, n1=20,σ1=5,x¯1=17 and n2=20,σ2=5,x¯2=22

We know that, σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

=20×(5)2+20×(5)220+20+20×20(1722)2(20+20)2=100040+400×251600=25+254=1254=31.25=5.59

9. The frequency distribution

x A 2A 3A 4A 5A 6A
f 2 1 1 1 1 1

where, A is a positive integer, has a variance of 160 . Determine the value of A.

Show Answer

Solution

x fi fixi fixi2
A 2 2A 2A2
2A 1 2A 4A2
3A 1 3A 9A2
4A 1 4A 16A2
5A 1 5A 25A2
6A 1 6A 36A2
Total 7 22A 92A2
n=7 Σfini=22A Σfini2=92A2

σ2=Σfixi2nΣfixin160=92A2722A27160=92A27484A249160=(644484)A249160=160A249A2=49A=7

10. For the frequency distribution

x 2 3 4 5 6 7
f 4 9 16 14 11 6

Find the standard distribution.

Show Answer

Solution

xi fi di=xi4 fidi fidi2
2 4 -2 -8 16
3 9 -1 -9 9
4 16 0 0 0
5 14 1 14 14
6 11 2 22 44
7 6 3 18 54
Total 60 Σfidi=37 Σfidi2=137
SD =Σfidi2NΣfidi2N
=1376037260
=2.2833(0.616)2
=2.28330.3794
=1.9037=1.38

11. There are 60 students in a class. The following is the frquency distribution of the marks obtained by the students in a test.

Marks 0 1 2 3 4 5
Frequency x2 x x2 (x+1)2 2x x+1

where, x is positive integer. Determine the mean and standard deviation of the marks

Show Answer

Solution

Sum of frequencies,

x2+x+x2+(x+1)2+2x+x+1=602x2+x2+x2+1+2x+2x+x+1=602x2+7x=602x2+7x60=02x2+15x8x60=0x(2x+15)4(2x+15)=0(2x+15)(x4)=0 x=152,4x=152  [inaddmisible] [x/+]

xifidi=xi3fidifidi202361814281621611616A=325000481885521020 Total Σfi=60Σfidi=12Σfidi2=78

 Mean =A+fidiΣfi=3+1260=2.8σ=fidi2Σfifidi2Σfi=786012260=1.30.04=1.26=1.12

12. The mean life of a sample of 60 bulbs was 650h and the standard deviation was 8h. If a second sample of 80 bulbs has a mean life of 660 h and standard deviation 7h, then find the over all standard deviation.

Show Answer

Solution

Here, n1=60,x¯1=650,s1=8 and n2=80,x¯2=660,s2=7

σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

=60×(8)2+80×(7)260+80+60×80(650660)2(60+80)2

=6×64+8×4914+60×80×100140×140

=192+1967+120049=3887+120049

=2716+120049=391649=62.587=8.9

13. If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item.

Show Answer

Solution

Here, x¯=50,n=100 and σ=4

Σxi100=50Σxi=5000 and σ2=Σfixi2ΣfiΣfixiΣfi(4)2=Σfixi2100(50)216=Σfixi21002500Σfixi2100=16+25002516fixi2=251600

14. If for distribution Σ(x5)=3,Σ(x5)2=43 and total number of item is 18 . Find the mean and standard deviation.

Show Answer

Solution

Given,

n=18,Σ(x5)=3 and Σ(x5)2=43=5+318=5+0.1666=5.1666=5.17 SD =(x5)2n(x5)2n=4318318=2.3944(0.166)2=2.39440.2755=1.59

 Mean =A+(x5)18 and 

15. Find the mean and variance of the frequency distribution given below.

x 1x3 3x5 5x7 7x10
f 6 4 5 1
Show Answer

Solution

x fi xi fixi fixi2
13 6 2 12 24
35 4 4 16 64
57 5 6 30 180
710 1 8.5 8.5 72.25
Total n=16 Σfixi=66.5 Σfixi2=340.25

Mean =ΣfixiΣfi=66.516=4.15

 variance =σ2=Σfixi2ΣfiΣfixiΣfi=340.2516(4.15)2=21.265617.2225=4.043

Long Answer Type Questions

16. Calculate the mean deviation about the mean for the following frequency distribution.

 Class interval 044881212161620 Frequency 46852

Show Answer

Solution

Class internalfixifixidi=xixfidi044287.228.84866363.219.2812810800.86.41216514704.824.01620218368.817.6TotalΣfi=25Σfixi=230Σfidi=96

 Mean =ΣfixiΣfi=23025=9.2 and  mean deviation =ΣfdiΣfi=9625=3.84

17. Calculate the mean deviation from the median of the following data.

Class interval 06 612 1218 1824 2430
Frequency 4 5 3 6 2
Show Answer

Solution

Class interval fi xi cf di=∣xim¯d fidi
06 4 3 4 11 44
6-12 5 9 9 5 25
1218 3 15 12 1 3
1824 6 21 18 7 42
2430 2 27 20 13 26
Total N=20 N2=202=10

So, the median class is 1218.

 Median =l+N2cff×i=12+63(109)=12+2=14MD=ΣfidiΣfi=14020=7

18. Determine the mean and standard deviation for the following distribution.

Marks 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 6 6 8 8 2 2 3 0 2 1 0 0 0 1
Show Answer

Solution

Marks fi fixi di=xix¯ fidi fidi2
2 1 2 26=4 -4 16
3 6 18 36=3 -18 54
4 6 24 46=2 -12 24
5 8 40 56=1 -8 8
6 8 48 66=0 0 0
7 2 14 76=1 2 2
8 2 16 86=2 4 8
9 3 27 96=3 9 27
10 0 0 106=4 0 0
11 2 22 116=5 10 50
12 1 12 126=6 6 36
13 0 0 136=7 0 0
14 0 0 146=8 0 0
15 0 0 156=9 0 0
16 1 16 166=10 10 100
Total Σfi=40 Σfixi=239 Σfidi=1 Σfixi2=325

 Mean x¯=ΣfixiΣfi=23940=5.9756 and σ=Σfidi2ΣfiΣfidi2Σfi=325401402=8.1250.000625=8.124375=2.85

19. The weights of coffee in 70 jars is shown in the following table

Weight (in g) Frequency
200201 13
201202 27
202203 18
203204 10
204205 1
205206 1

Determine variance and standard deviation of the above distribution.

Show Answer

Solution

Cl fi xi di=xix¯ fidi fidi2
200-201 13 200.5 -2 -26 52
201202 27 201.5 -1 -27 27
202-203 18 202.5 0 0 0
203-204 10 203.5 1 10 10
204-205 1 204.5 2 2 4
205-206 1 205.5 3 3 9

Σfi=70 Σfidi=
-38 Σfidi2=102 | Tfifi

Now,
=1.45710.2916=1.1655σ=1.1655=1.08g

20. Determine mean and standard deviation of first n terms of an AP whose first term is a and common difference is d.

Show Answer

Solution

xi xxia (xia)2
a 0 0
a+d d d2
a+2d 2d 4d2
9d2
.
.
a+(n1)d (n1)d (n1)2d2
xi=n2[2a+(n1)]
Mean =xin=1nn2(2a)+(n1)d
= a+(n1)2d

Σ(xia)=d[1+2+3++(n1)d]=d(n1)n2 and (xia)2=d2[12+22+32++(n1)2]=d2(n1)n(2n1)6σ=(xia)2nxia2n=d2(n1)(n)(2n1)6nd(n1)n22n=d2(n1)(2n1)6d2(n1)24=d(n1)(2n1)6(n1)24=d(n1)22n13n12=d(n1)24n23n+36=d(n1)(n+1)12=d(n21)12

21. Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests

Ravi 25 50 45 30 70 42 36 48 35 60
Hashina 10 70 50 20 95 55 42 60 48 80

Who is more intelligent and who is more consistent?

Show Answer

Solution

For Ravi,

xi di=xi45 di2
25 -20 400
50 5 25
45 0 0
30 -15 225
70 25 625
42 -3 9
36 -9 81
48 3 9
35 -10 100
60 15 225
Total Σdi=14 Σdi2=1699

Now,

σ=Σd2inΣdi2n=16991014210=169.90.0196=169.88=13.03x¯=A+ΣdiΣfi=451410=43.6

For Hashina,

xi di=xi55 di2
10 -45 2025
70 25 625
50 -5 25
20 -35 1225
95 40 1600
55 0 0
42 -13 169
60 5 25
48 -7 49
80 25 625
Total Σdi=0 di2=6368

 Mean =55σ=636810=636.8=25.2CV=σx¯×100=13.0343.6×100=29.88CV=σx¯×100=25.255×100=45.89

Hence, Hashina is more consistent and intelligent.

22. Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, then find the correct standard deviation.

Show Answer

Solution

Given,

n=100,x¯=40,σ=10 and x¯=40xin=40Σxi100=40Σxi=4000 Corrected Σxi=40003070+3+27=4030100=3930 Corrected mean =2930100=39.3

σ2=Σxi2n(40)2100=Σxi21001600Σxi2=170000

Corrected Σxi2=170000(30)2(70)2+32+(27)2

=164939 Corrected σ=164939100(39.3)2=1649.3939.3×39.3=1649.391544.49=104.9=10.24

23. While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16, respectively. Find the correct mean and the variance.

Show Answer

Solution

Given,

n=10,x¯=45 and σ2=16x¯=45Σxin=45Σxi10=45Σxi=450

Corrected Σxi=45052+25=423

x¯=42310=42.3

σ2=Σxi2nΣxin

16=Σxi210(45)2

Σxi2=10(2025+16)

Σxi2=20410

Corrected Σxi2=20410(52)2+(25)2=18331

and

corrected σ2=1833110(42.3)2=43.81

Objective Type Questions

24. The mean deviation of the data 3,10,10,4,7,10,5 from the mean is

(a) 2

(b) 2.57

(c) 3

(d) 3.75

Show Answer

Solution

(b) Given, observations are 3,10,10,4,7,10 and 5.

=497=7
xi di=xix¯
3 4
10 3
10 3
4 3
7 0
10 3
5 2
Total Σdi=18
Now, MD=diN=187=2.57

25. Mean deviation for n observations x1,x2,,xn from their mean x¯ is given by

(a) i=1n(xix¯)

(b) 1ni=1n|xix¯|

(c) i=1n(xix¯)2

(d) 1ni=1n(xix¯)2

Show Answer

Solution

(b) MD=1ni=1n|xix¯|

26. When tested, the lives (in hours) of 5 bulbs were noted as follows

1357,1090,1666,1494,1623

The mean deviations (in hours) from their mean is

(a) 178

(b) 179

(c) 220

(d) 356

Show Answer

Solution

(a) Since, the lives of 5 bulbs are 1357, 1090, 1666, 1494 and 1623.

 Mean =1357+1090+1666+1494+16235=72305=1446

xi di=∣xix¯
1357 89
1090 356
1666 220
1494 48
1623 177
Total di=890
MD =ΣdiN=8905=178

27. Following are the marks obtained by 9 students in a mathematics test 50,69,20,33,53,39,40,65,59

The mean deviation from the median is

(a) 9

(b) 10.5

(c) 12.67

(d) 14.76

Show Answer

Solution

(c) Since, marks obtained by 9 students in Mathematics are 50, 69, 20, 33, 53, 39, 40, 65 and 59.

Rewrite the given data in ascending order.

20,33,39,40,50,53,59,65,69,

Here

n=9

[odd]

Median =9+12 term =5 th term

Me=50
xi di=∣xiMe
20 30
33 17
39 11
40 10
50 0
53 3
59 9
65 15
69 19
N=2 Σdi=114
MD =1149=12.67

28. The standard deviation of data 6,5,9,13,12,8 and 10 is

(a) 527

(b) 527

(c) 6

(d) 6

Show Answer

Solution

(a) Given, data are 6, 5, 9, 13, 12, 8, and 10.

xixi2636525981131691214486410100Σxi=63Σxi2=619

SD=σ=Σxi2NΣxiN2=61976372=7×619396949=4333396949=36449=527

29. If x1,x2,,xn be n observations and x¯ be their arithmetic mean. Then, formula for the standard deviation is given by

(a) Σ(xix¯)2

(c) (xix¯)2n

(b) Σ(xix¯)2n

(d) xi2n+x¯2

Show Answer

Solution

(c) SD is given by

σ=(xix¯)2n

30. If the mean of 100 observations is 50 and their standard deviation is 5 , than the sum of all squares of all the observations is

(a) 50000

(b) 250000

(c) 252500

(d) 255000

Show Answer

Solution

(c) Given,

x¯=50,n=100 and σ=5Σxi2=?x¯=Σxin

50=Σxi100Σxi=50×100=5000

 Now, σ=Σxi2nxi2nσ2=xi2n(x¯)225=Σxi2100(50)225=Σxi210025002525=Σxi2100Σxi2=252500

31. If a,b,c,d and e be the observations with mean m and standard deviation s, then find the standard deviation of the observations a+k, b+k,c+k,d+k and e+k is

(a) s

(b) ks

(c) s+k

(d) sk

Show Answer

Solution

(a) Given observations are a,b,c,d and e.

 Mean =m=a+b+c+d+e5Σxi=a+b+c+d+e=5m Now,  mean =a+k+b+k+c+k+d+k+e+k5=(a+b+c+d+e)+5k5=m+kSD=(xi+k)2n(m+k)2=(xi2+k2+2kxi)n(m2+k2+2mk)=Σxi2nm2+2kΣxin2mk=Σxi2nm2+2km2mkΣxin=m=Σxi2nm2=s

32. If x1,x2,x3,x4 and x5 be the observations with mean m and standard deviation s then, the standard deviation of the observations kx1,kx2, kx3,kx4 and kx5 is

(a) k+s

(b) sk

(c) ks

(d) s

Show Answer

Solution

(c) Here,

m=Σxi5,s=Σxi25Σxi5SD=k2Σxi25kΣxi25=k2Σxi25k2Σxi25=Σxi25Σxi52=ks

33. Let x1,x2,xn be n observations. Let wi=lxi+k for i=1,2,,n, where l and k are constants. If the mean of xis is 48 and their standard deviation is 12, the mean of wis is 55 and standard deviation of wi ’s is 15 , then the value of l and k should be

(a) l=1.25,k=5

(b) l=1.25,k=5

(c) l=2.5,k=5

(d) l=2.5,k=5

Show Answer

Solution

(a) Given, wi=xi+k,x¯i=48,sxi=12,wi=55 and swi=15

Then, w¯i=x¯i+k

[where, w¯i is mean wi ’s and x¯i is mean of xis ]

55=48+k

Now, SD of wi= SD of xi

15=12

l=1512

=1.25

From Eqs. (i) and (ii),

k=551.25×48

=5

34. The standard deviations for first natural numbers is

(a) 5.5

(b) 3.87

(c) 2.97

(d) 2.87

Show Answer

Solution

(d) We know that, SD of first n natural number =n2112

SD of first 10 natural numbers =(10)2112

=100112=9912=8.25=2.87

35. Consider the numbers 1,2,3,4,5,6,7,8,9, and 10 . If 1 is added to each number the variance of the numbers, so obtained is

(a) 6.5

(b) 2.87

(c) 3.87

(d) 8.25

Show Answer

Solution

(d) Given numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

If 1 is added to each number, then observations will be 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 .

xi=2+3+4++11=102[2×2+9×1]=5[4+9]=65Σxi2=22+32+42+52++112=(12+22+32++112)(12)=11×12×2361=11×12×2366=505

s2=Σxi2nΣxin2=5051065102=50.5(6.5)2=50.542.25=8.25

36. Consider the first 10 positive integers. If we multiply each number by -1 and, then add 1 to each number, the variance of the numbers, so obtained is

(a) 8.25

(b) 6.5

(c) 3.87

(d) 2.87

Show Answer

Solution

(a) Since, the first 10 positive integers are1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

On multiplying each number by -1 , we get

1,2,3,4,5,6,7,8,9,10

On adding 1 in each number, we get

0,1,2,3,4,5,6,7,8,9=9×102=45 and Σxi2=02+(1)2+(2)2++(9)2=9×10×196=285SD=285104510=285102025100=28502025100=8.25 Now,  variance =(SD)2=(8.25)2=8.25

37. The following information relates to a sample of size 60,Σx2=18000, and Σx=960. Then, the variance is

(a) 6.63

(b) 16

(c) 22

(d) 44

Show Answer

Solution

(d)

 Variance =Σxi2nΣxin=1800060960602=300256=44

38. If the coefficient of variation of two distributions are 50,60 and their arithmetic means are 30 and 25 respectively, then the difference of their standard deviation is

(a) 0

(b) 1

(c) 1.5

(d) 2.5

Show Answer

Solution

(a) Here

CV1=50,CV2=60,x¯1=30 and x¯2=25

CV1=σ1x¯1×10050=σ130×100

σ1=30×50100=15 and CV2=σ2x¯2×100

60=σ225×100

σ2=60×25100=15

 Now, σ1σ2=1515=0

39. The standard deviation of some temperature data in C is 5 . If the data were converted into F, then the variance would be (a) 81 (b) 57 (c) 36 (d) 25

Show Answer

Solution

(a) Given,

σC=559(F32)=C

F=9C5+32σF=95σC=95×5=9

Here,

σF2=(9)2=81

Fillers

40. Coefficient of variation = Mean ×100

Show Answer

Solution

CV=SD Mean ×100

41. If x¯ is the mean of n values of x, then i=1n(x1x¯) is always equal to ……

If a has any value other than x, then i=1n(xix)2 …… is than Σ(xia)2

Show Answer

Solution

If x¯ is the mean of n values of x, then i=1n(xix¯)=0 and if a has any value other than x¯, then i=1n(xix¯)2 is less than (xia)2

42. If the variance of a data is 121 , then the standard deviation of the data is ……

Show Answer

Solution

If the variance of a data is 121 .

Then,

SD= Variance =121=11

43. The standard deviation of a data is …… of any change in origin, but is …… on the change of scale.

Show Answer

Solution

The standard deviation of a data is independent of any change in origin but is dependent of change of scale.

44. The sum of squares of the deviations of the values of the variable is …… when taken about their arithmetic mean.

Show Answer

Solution

The sum of the squares of the deviations of the values of the variable is minimum when taken about their arithmetic mean.

45. The mean deviation of the data is …… when measured from the median.

Show Answer

Solution

The mean deviation of the data is least when measured from the median.

46. The standard deviation is …… to the mean deviation taken from the arithmetic mean.

Show Answer

Solution

The SD is greater than or equal to the mean deviation taken from the arithmetic mean.



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane