Limits and Derivatives

Short Answer Type Questions

1. Evaluate limx3x29x3.

Show Answer

Solution

Given,

limx3x29x3=limx3x2(3)2x3=limx3(x+3)(x3)(x3)=limx3(x+3)=3+3=6

2. Evaluate limx1/24x212x1.

Show Answer

Solution

Given,

limx1/24x212x1=limx1/2(2x)2(1)22x1=limx1/2(2x+1)(2x1)(2x1)=limx1/2(2x+1)=2×12+1=1+1=2

3. Evaluate limh0x+hxh.

Show Answer

Solution

Given, limh0x+hxh=limh0(x+h)1/2(x)1/2x+hx

=limh0(x+h)1/2(x)1/2(x+h)x [limxaxnanxa=nan1]

=12x121=12x1/2 [h0x+hx]

=12x

4. Evaluate limx0(x+2)1/321/3x.

Show Answer

Solution

Given, limx0(x+2)1/321/3x=limx0(x+2)1/321/3(x+2)2

=13×2131

=13×(2)2/3[limxaxnanxa=nan1]

=13(2)2/3[x0x+22]

5. Evaluate limx0(1+x)61(1+x)21.

Show Answer

Solution

Given, limx0(1+x)61(1+x)21=limx0(1+x)61x(1+x)21x [dividing numerator and denominator by x ]

=limx0(1+x)61(1+x)1(1+x)21(1+x)1 [x01+x1]

=limx0(1+x)6(1)6(1+x)1limx0(1+x)2(1)2(1+x)1[limxaf(x)g(x)=limxaf(x)limxag(x)]

=6(1)612(1)21[limxaxnanxa=nan1]

=6×12×1=62=3

6. Evaluate limxa(2+x)5/2(a+2)5/2xa.

Show Answer

Solution

Given, limxa(2+x)5/2(a+2)5/2xa=limxa(2+x)5/2(a+2)5/2(2+x)(a+2)

=52(a+2)521[limxaxnanxa=nan1]

=52(a+2)3/2[xax+2a+2]

7. Evaluate limx1x4xx1.

Show Answer

Solution

Given, limx1x4xx1=limx1x[(x)7/21]x1

=limx1(x)7/21x1limx1x[limxaf(x)g(x)=limxaf(x)limxag(x)]=limx1x7/21x1(x)1/21x11=limx1x7/21x1limx1(x)1/21x1=72(1)7217212=712(1)12112

8. Evaluate limx2x243x2x+2.

Show Answer

Solution

Given, limx2x243x2x+2=limx2(x24)3x2+x+2)(3x2x+2)(3x2x+2)

=limx2(x24)(3x2+x+2)(3x2)2(x+2)2

[(a+b)(ab)=a2b2]=limx2(x24)(3x2+x+2)(3x2)(x+2)=limx2(x24)(3x2+x+2)3x2x2=limx2(x24)(3x2+x+2)2x4=limx2(x+2)(x2)(3x2+x+2)2(x2)=limx2(x+2)(3x2+x+2)2=(2+2)(62+2+2)2=4(2+2)2=8

9. Evaluate limx2x44x2+32x8.

Show Answer

Solution

Given, limx2x44x2+32x8=limx2(x2)2(2)2x2+32x8

=limx2(x22)(x2+2)x2+42x2x8=limx2(x2)(x+2)(x2+2)x(x+42)2(x+42)=limx2(x2)(x+2)(x2+2)(x2)(x+42)=limx2(x+2)(x2+2)(x+42)=(2+2)[(2)2+2](2+42)=22(2+2)52=85

10. Evaluate limx1x72x5+1x33x2+2.

Show Answer

Solution

Given,

limx1x72x5+1x33x2+2=limx1x7x5x5+1x3x22x2+2=limx1x5(x21)1(x51)x2(x1)2(x21)

On dividing numerator and denominator by (x1), then

=limx1x5(x21)(x1)1(x21)(x1)x2(x1)(x1)2(x21)(x1)=limx1x5(x+1)limx1x51x1limx1x2limx1(x+1)=1×25×(1)412×2=2514=33=1

11. Evaluate limx01+x31x3x2.

Show Answer

Solution

Given, limx01+x31x3x2=limx01+x31x3x21+x3+1x31+x3+1x3

=limx0(1+x3)(1x3)x2(1+x3+1x3) =limx01+x31+x3x2(1+x3+1x3)

=limx02x3x2(1+x3+1x3)

=limx02x(1+x3+1x3)

=0

12. Evaluate limx3x3+27x5+243.

Show Answer

Solution

Given, limx3x3+27x5+243=limx3x3+27x+3x5+243x+3

=limx3x3(3)3x(3)x5(3)5x(3)=limx3x3(3)3x(3)limx3x5(3)5x(3)[limxaf(x)g(x)=limxaf(x)limxag(x)]=3(3)315(3)51=35(3)2(3)4[limxaxnanxa=nan1]=35(3)2=345=115

13. Evaluate limx1/2(8x32x14x2+14x21).

Show Answer

Solution

Given, limx1/2(8x32x14x2+14x21)=limx1/2[(8x3)(2x+1)(4x2+1)(4x21)]

=limx1/2[16x2+8x6x34x214x21]=limx1/2[12x2+2x44x21]=limx1/2[2(6x2+x2)4x21]

=limx1/22(6x2+4x3x2)4x21=limx1/22[2x(3x+2)1(3x+2)]4x21=limx1/22[(3x+2)(2x1)](2x)2(1)2=limx1/22(3x+2)(2x1)(2x1)(2x+1)=limx1/22(3x+2)2x1=2(3×12+2)2×12+1=32+2=72

14. Find the value of n, if limx2xn2nx2=80,nN.

Show Answer

Solution

Given,

limx2xn2nx2=80

n(2)n1=80[limxaxnanxa=nan1]n(2)n1=5×16n×2n1=5×(2)4n×2n1=5×(2)51n=5

15. Evaluate limx0sin3xsin7x.

Show Answer

Solution

Given, limx0sin3x3x3xsin7x7x7x=limx0sin3x3xlimx0sin7x7x3x7x

=37limx0sin3x3xlimx0sin7x7x

=37[x0(kx0), here k is real number ]

16. Eavaluate limx0sin22xsin24x.

Show Answer

Solution

Given, limx0sin22xsin24x=limx0sin22x[sin2(2x)]2

=limx0sin22x(2sin2xcos2x)2=limx0sin22x4sin22xcos22x[sin2θ=2sinθcosθ]=limx014cos22x=14[cos0=1]

17. Evaluate limx01cos2xx2.

Show Answer

Solution

Given, limx01cos2xx2=limx011+2sin2xx2[cos2x=12sin2x]

=limx02sin2xx2=2limx0sin2xx2=2limx0(sinxx)2[limx0(sinxx)2=1]=2×1=2

18. Evaluate limx02sinxsin2xx3.

Show Answer

Solution

Given, limx02sinxsin2xx3=limx02sinx2sinxcosxx3[sin2x=2sinxcosx]

=limx02sinx(1cosx)x3=2limx0sinxxlimx0(1cosxx2)

=21limx01cosxx2[limx0sinxx=1]=2limx011+2sin2x2x2=2limx02sin2x24×x24=224limx0(sinx2x2)2=limx0(sinx22x2)2=1

19. Evaluate limx01cosmx1cosnx.

Show Answer

Solution

Given, limx01cosmx1cosnx=limx011+2sin2mx211+2sin2nx2

[cosmx=12sin2mx2

and sinnx=12sin2nx2]

=limx0sin2mx2sin2nx2=limx0sin2mx2(mx2)2(mx2)2sin2nx2(nx2)2(nx2)2\=limx0(sinmx2mx2)2limx0(sinnx2nx2)2m2n2

[limx0sinxx=1]

[x0kx0]

20. Evaluate limxπ/31cos6x2π3x.

Show Answer

Solution

Given, limxπ/31cos6x2(π3x)=limxπ/311+2sin23x2(π3x)

[cos2x=12sin2x]

=limxπ/32sin3x2(π3x)=limxπ/3sin3xπ3x

=limxπ/3sin(π3x)π3x3[sin(πθ)=sinθ]

=3limxπ/3sin(π3x)(π3x)=3×1[limx0sinxx=1]

=3[xπ3xπ30]

21. Evaluate limxπ4sinxcosxxπ4.

Show Answer

Solution

Given, limxπ/42(sinx12cosx12)(xπ4)=limxπ/42(sinxcosπ4cosxsinπ4)(xπ4)

=limxπ/42sinxπ4xπ4=2limxπ/4sinxπ4xπ4=2[limx0sinxx=1]

[xπ4xπ40]

22. Evaluate limxπ/63sinxcosxxπ6.

Show Answer

Solution

Given, limxπ/63sinxcosxxπ6=limxπ/6232sinx12cosxxπ6

=limxπ/62(sinxcosπ6cosxsinπ6)(xπ6) =2limxπ/6sin(xπ6)(xπ6)

=2[sinAcosBcosAsinB=sin(AB)]

[limx0sinxx=1]

[xπ6(xπ6)0]

23. Evaluate limx0sin2x+3x2x+tan3x.

Show Answer

Solution

Given, limx0sin2x+3x2x+tan3x=limx0sin2x+3x2x2x2x+tan3x3x3x

=limx0(sin2x2x+3x2x)2x(2x3x+tan3x3x)3x=limx0sin2x2x+3223+tan3x3x23

=23limx0sin2x2x+3223+limx0tan3x3x=23(1+3223+1)[limx0sinxx=1 and limx0tanxx=1]=23×2553=23×52×35=1

24. Evaluate limxasinxsinaxa.

Show Answer

Solution

Given, limxasinxsinaxa=limx02cos(x+a2)sin(xa2)xa

=limxa2cos(x+a2)sin(xa2)(x+a)(xa)(x+a)=limx02cos(x+a2)sin(xa2)(x+a)xa=2limxacos(x+a2)(x+a)limx0sin(xa2)xa2=2limx0cos(x+a2)(x+a)12limx0sin(xa2)xa2=2cosa2a12=acosa2

25. Evaluate limxπ/6cot2x3cosecx2.

Show Answer

Solution

Given limxπ/6cot2x3cosecx2=limxπ/6cosec2x13cosecx2[cosec2x=1+cot2x]

=limxπ/6cosec2x4cosecx2=limxπ/6(cosecx)2(2)2cosecx2=limxπ/6(cosecx+2)(cosecx2)(cosecx2)=limxπ/6(cosecx+2)=cosecπ6+2=2+2=4

26. Evaluate limx021+cosxsin2x.

Show Answer

Solution

Given, limx021+cosxsin2x=limx021+2cos2x21sin2x[cosx=2cos2x21]

=limx022cos2x2sin2x=limx02(1cosx2)sin2x=limx02(11+2sin2x4)sin2x=limx02(2sin2x4)sin2x=limx022sin2x4(x4)2(x4)2sin2x=22limx0(sinx4x4)2limx0(xsinx)2116=2211116=142

27. Evaluate limx0sinx2sin3x+sin5xx.

Show Answer

Solution

Given,

limx0sinx2sin3x+sin5xx=limx0sin5x+sinx2sin3xx=limx02sin3xcos2x2sin3xx=limx02sin3x(cos2x1)x=limx02sin3x13×3x(cos2x1)=6limx0sin3x3x(cos2x1)=6limx0sin3x3xlimx0(cos2x1)=6×1×0=0

28. If limx1x41x1=limxkx3k3x2k2, then find the value of k.

Show Answer

Solution

Given,

limx1x41x1=limxkx3k3x2k2

4(1)41=limxkx3k3xkx2k2xk

4=limxkx3k3xklimxkx2k2xk14=3k22k4=32kk=4×23=83

Differentiate each of the functions w.r.t. x in following questions

29. x4+x3+x2+1x

Show Answer

Solution

ddx(x4+x3+x2+1x)=ddx(x3+x2+x+1x)

=ddxx3+ddxx2+ddxx+ddx(1x)=3x2+2x+1+(1x2)=3x2+2x+11x2=3x4+2x3+x21x2

30. (x+1x)3

Show Answer

Solution

Let

y=(x+1x)3

dydx=ddx(x+1x)3=3(x+1x)31ddx(x+1x)=3(x+1x)2(11x2)=3x23x23x4+3

31. (3x+5)(1+tanx)

Show Answer

Solution

Let

y=(3x+5)(1+tanx)dydx=ddx[(3x+5)(1+tanx)]=(3x+5)ddx(1+tanx)+(1+tanx)ddx(3x+5) [by product rule] =(3x+5)(sec2x)+(1+tanx)3=(3x+5)sec2x+3(1+tanx)=3xsec2x+5sec2x+3tanx+3

dydx=ddx[(3x+5)(1+tanx)]

32. (secx1)(secx+1)

Show Answer

Solution

Let

y=(secx1)(secx+1)y=(sec21)[(a+b)(ab)=a2b2]=tan2xdydx=2tanxddxtanx=2tanxsec2x [by chain rule] 

33. 3x+45x27x+9

Show Answer

Solution

Let y=3x+45x27x+9

dydx=(5x27x+9)ddx(3x+4)(3x+4)ddx(5x27x+9)(5x27x+9)2 [by quotient rule] =(5x27x+9)3(3x+4)(10x7)(5x27x+9)2=15x221x+2730x2+21x40x+28(5x27x+9)2=15x240x+55(5x27x+9)2=5515x240x(5x27x+9)2

34. x5cosxsinx

Show Answer

Solution

Let

y=x5cosxsinxdydx=sinxddx(x5cosx)(x5cosx)ddxsinx(sinx)2 [by quotient rule] =sinx(5x4+sinx)(x5cosx)cosxsin2x=5x4sinx+sin2xx5cosx+cos2xsin2x=5x4sinxx5cosx+sin2x+cos2xsin2x=5x4sinxx5cosx+1sin2x

35. x2cosπ4sinx

Show Answer

Solution

Let

y=x2cosπ4sinx=x22sinxy=12x2sinxdydx=12[sinxddxx2x2ddxsinxsin2x]=12[sinx2xx2cosxsin2x]=122xsinxx2cosxsin2x=x2[2cosecxxcotxcosecx]=x2cosec[2xcotx] [dydx=12sinxddxx2x2ddxsinxsin2x]

36. (ax2+cotx)(p+qcosx)

Show Answer

Solution

Let y=(ax2+cotx)(p+qcosx)

dydx=(ax2+cotx)ddx(p+qcosx)+(p+qcosx)ddx(ax2+cotx) [by product rule] =(ax2+cotx)(qsinx)+(p+qcosx)(2axcosec2x)=qsinx(ax2+cotx)+(p+qcosx)(2axcosec2x)

37. a+bsinxc+dcosx

Show Answer

Solution

Let y=a+bsinxc+dcosx

dydx=(c+dcosx)ddx(a+bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2 [by quotinet rule] =(c+dcosx)(bcosx)(a+bsinx)(dsinx)(c+dcosx)2=bcosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2=bcosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2=bccosx+adsinx+bd(c+dcosx)2

38. (sinx+cosx)2

Show Answer

Solution

Let

y=(sinx+cosx)2dydx=2(sinx+cosx)(cosxsinx)=2(cos2xsin2x) [by chain rule] =2cos2x[cos2x=cos2xsin2x]

39. (2x7)2(3x+5)3

Show Answer

Solution

Let

y=(2x7)2(3x+5)3dydx=(2x7)2ddx(3x+5)3+(3x+5)3ddx(2x7)2 [by product rule] =(2x7)2(3)(3x+5)2(3)+(3x+5)32(2x7)(2) [by chain rule] =9(2x7)2(3x+5)2+4(3x+5)3(2x7)=(2x7)(3x+5)2[9(2x7)+4(3x+5)]=(2x7)(3x+5)2(18x63+12x+20)=(2x7)(3x+5)2(30x43)

40. x2sinx+cos2x

Show Answer

Solution

Let

y=x2sinx+cos2xdydx=ddx(x2sinx)+ddxcos2x=x2cosx+sinx2x+(sin2x)2 [by product rule] =x2cosx+2xsinx2sin2x [by chain urle] 

41. sin3xcos3x

Show Answer

Solution

Let

y=sin3xcos3xdydx=sin3xddxcos3x+cos3xddxsin3x [by product rule] =sin3x3cos2x(sinx)+cos3x3sin2xcosx [by chain rule] =3cos2xsin4x+3sin2xcos4x=3sin2xcos2x(cos2xsin2x)=3sin2xcos2xcos2x=34(2sinxcosx)2cos2x=34sin22xcos2x

42. 1ax2+bx+c

Show Answer

Solution

Let y=1ax2+bx+c=(ax2+bx+c)1

dydx=(ax2+bx+c)2(2ax+b) [by chain rule] =(2ax+b)(ax2+bx+c)2

Long Answer Type Questions

Differentiate each of the functions with respect to x in following questions using first principle.

43. cos(x2+1)

Show Answer

Solution

Let

f(x)=cos(x2+1) and f(x+h)=cos{(x+h)2+1}ddxf(x)=limh0f(x+h)f(x)h=limh0cos{(x+h)2+1}cos(x2+1)h=limh02sin{(x+h)2+1+x2+12}sin{(x+h)2+1x212}h[cosCcosD=2sin{C+D2}sin{CD2}]=limh01h[2sin{(x+h)2+x2+22}sin{(x+h)2x22}]=limh01h[2sin{(x+h)2+x2+22}sin{x2+h2+2xhx22}]=limh01h[2sin{(x+h)2+x2+22}sin{h2+2hx2}]=2limh0sin{(x+h)2+x2+22}limh0{sinhh+2x2hh+2x2}×(h+2x2)=2limh0sin{(x+h)2+x2+22}limh0(h+2x2)[limx0sinxx=1]=2xsin(x2+1)

ddxf(x)=limh0f(x+h)f(x)h

44. ax+bcx+d

Show Answer

Solution

Let f(x)=ax+bcx+d

f(x+h)=a(x+h)+bc(x+h)+d

ddxf(x)=limh01h[f(x+h)f(x)]

=limh01h[a(x+h)+bc(x+h)+dax+bcx+d]

=limh01h[ax+b+ahc(x+h)+dax+bcx+d]

=limh01h[(ax+ah+b)(cx+d)(ax+bc(x+h)+dc(x+h)+d(cx+d)]

=limh01h[(ax+ah+b)(cx+d)(ax+b)(cx+ch+d){c(x+h)+d)}(cx+d)]

acx2+achx+bcx+adx+adh+bd

=limh01h[acx2+achx+adx+bcx+bch+bd{c(x+h)+d}(cx+d)]

acx2+achx+bcx+adx+adh+bd

=limh01h[acx2achxadxbcxbchbd{c(x+h)+d}(cx+d)]

=limh01h[adhbch{c(x+h)+d}(cx+d)]

=limh0acbdc(x+h)+d(cx+d)

=acbd(cx+d)2

45. x2/3

Show Answer

Solution

Let

Now, f(x)=x2/3f(x+h)=(x+h)2/3ddxf(x)=limh0f(x+h)f(x)h=limh01h[(x+h)2/3x2/3]=limh01h[x2/3(1+hx)2/3x2/3]

=limh01h[x2/3(1+hx23+23(231)h2x2+)1][(1+x)h=1+nx+h(n1)2!x2+]=limh01h[x2/3(23hx29h2x2+)]=limh0x2/3h23hx(113hx+)=23x2/31=23x1/3

Alternate Method

Let f(x)=x2/3f(x+h)=(x+h)2/3ddxf(x)=limh0f(x+h)f(x)h=lim(h0)[(x+h)2/3x2/3h]=lim(x+h)x[(x+h)2/3x2/3(x+h)x]=23(x)2/31[limxaxxanxa=nan1]=23x1/3

46. xcosx

Show Answer

Solution

Let

f(x)=xcosxf(x+h)=(x+h)cos(x+h)ddxf(x)=limh0f(x+h)f(x)h=limh01h[(x+h)cos(x+h)xcosx]=limh01h[xcos(x+h)+hcos(x+h)xcosx]=limh01h[x{cos(x+h)cosx}+hcos(x+h)]=limh01h[x{2sin2x+h2sinh2}+hcos(x+h)]=limh0[2x(sinx+h2)sinh2h+cos(x+h)]=2limh0(xsinx+h2)limh0sinh2h212+limh0cos(x+h)=212xsinx+cosx=cosxxsinx

Evaluate each of the following limits in following questions

47. limy0(x+y)sec(x+y)xsecxy

Show Answer

Solution

Given, limy0(x+y)sec(x+y)xsecxy

=limy0x+ycos(x+y)xcosxy=limy0(x+y)cosxxcos(x+y)ycosxcos(x+y)=limy0xcosx+ycosxxcos(x+y)ycosxcos(x+y)=limy0xcosxxcos(x+y)+ycosxycosxcos(x+y)=limy0x{cosxcos(x+y)}+ycosxycosxcos(x+y)=limy0x[2sin(x+y2)sin(y2)]+ycosxycosxcos(x+y)[cosCcosD=2sinC+D2sinCD2]

=limy0[x{2sin(x+y2)siny2}+ycosxycosxcos(x+y)]=limy02xsin(x+y2)cosxcos(x+y)limy0siny2y212+limy0sec(x+y)[limx0sinxx=1 and x0kx0]

=limy02xsin(x+y2)cosxcos(x+y)12+limy0sec(x+y)=2xsinxcosxcosx12+secx=xtanxsecx+secx=secx(xtanx+1)

48. limx0sin(α+β)x+sin(αβ)x+sin2αxcos2βxcos2αxx

Show Answer

Solution

Given, limx0[sin(α+β)x+sin(αβ)x+sin2αx]cos2βxcos2αxx

=limx0[2sinαxcosβx+sin2αx]cos2βxsin+cos2αx=2sinC+D2cosCD2

=limx0[2sinαxcosβx+sin2αx]x2sin(α+β)xsin(αβ)x[cosCcosD=2sinC+D2sinDC2]=limx0[2sinαxcosβx+2sinαxcosαx]x2sin(α+β)xsin(αβ)x=limx02sinαx[cosβx+cosαx]x2sin(α+β)xsin(αβ)x=limx0sinαx[2cosα+β2xcosαβ2]×x2sinα+β2xcosα+β2x2sinαβ2xcosαβ2x[cosC+cosD=2cosC+D2cosCD2 and sin2θ=2sinθcosθ]=limx0sinαxx2sinα+β2xsinαβ2x=12limx0sinαxαxx(αx)2sinα+β2xα+β2xsinαβ2xαβ2xα+β2xαβ2x=12limx0sinαxαxαx2limx0sinα+β2xα+β2limx0αβ2xαβ2xα2β24x2

limx0sinxx=1 and x0kx0

=12α4α2β2[limx0sinαxαxlimx0sinα+β2xα+β2xlimx0sinαβ2xαβ2x]=124αα2β2=2αα2β2

49. limxπ/4tan3xtanxcos(x+π4)

Show Answer

Solution

Given, limxπ/4tan3xtanxcos(x+π4)

=limxπ/4tanx(tan2x1)cos(x+π4)=limxπ/4tanxlimxπ/4(1tan2xcos(x+gπ4))=1×limxπ/4(1+tanx)(1tanx)cos(x+π4)[a2b2=(a+b)(ab)]

=limxπ/4(1+tanx)limxπ/4[cosxsinxcosxcos(x+π4)]

=(1+1)×limxπ/42[12cosx12sinx]cosxcosx+π4=22limxπ/4[cosπ4cosxsinπ4sinxcosxcosx+π4][cosAcosBsinAsinB=cos(A+B)]=22limxπ/4cos(x+π4)cosxcos(x+π4)=22×112=22×2=4

50. limxπ1sinx2cosx2(cosx4sinx4)

Show Answer

Solution

Given, limxπ1sinx2cosx2(cosx4sinx4)

=limxπcos2x4+sin2x42sinx4cosx4cosx2(cosx4sinx4)[sin2θ+cos2θ=1sin2θ=2sinθcosθ]=limxπ(cosx4sinx4)2(cos2x4sin2x4)(cosx4sinx4)[cos22θ=cos2θsin2θ]

=limxπcosx4sinx4(cosx4+sinx4)(cosx4sinx4)limxπ1cosx4+sinx4=112+12=22=12

51. Show that limxπ/4|x4|x4 does not exist,

Show Answer

Solution

Given,

limxπ/4|x4|x4

LHL=limxπ4(x4)x4[|x4|=(x4),x<4]

=1

RHL=limxπ+4(x4)x4=1[|x4|=(x4),x>4]

LHL RHL

So, limit does not exist.

52. If f(x)={kcosxπ2x, when xπ23, when x=π2 and limxπ/2f(x)=fπ2, then find the

value of k.

Show Answer

Solution

Given,

f(x)={kcosxπ2x,xπ23,x=π2

LHL=limxπ2kcosxπ2x=limh0kcosπ2hπ2π2h

=limh0ksinhππ+2h=limh0ksinh2h

=k2limh0sinhh=k21=k2limh0sinxx=1

RHL=limxπ+2kcosxπ2x=limxπ2+kcosπ2+hπ2π2+h

=limh0ksinhππ2h=limh0ksinh2h=k2limh0sinh2h=k2 and fπ2=3

 It is given that, limxπ/2f(x)=fπ2k2=3

k=6

53. If f(x)={x+2,x1cx2,x>1 then find c when limx1f(x) exists.

Show Answer

Solution

Given,

f(x)={x+2,x1cx2,x>1LHL=limx1f(x)=limx(x+2)=limh0(1h+2)=limh0(1h)=1RHL=limx1+f(x)=limx1+cx2=limh0c(1+h)2

 If limx1f(x) exist, then LHL=RHL=cc=1

Objective Type Questions

54. limxπsinxxπ is equal to

(a) 1

(b) 2

(c) -1

(d) -2

Show Answer

Solution

(c) Given, limxπsinxxπ=limxπsin(πx)(πx)

[sinθ=sin(πθ)]

=limxπsin(πx)(πx)=1[limx0sinxx=1 and πx0xπ]

55. limx0x2cosx1cosx is equal to

(a) 2

(b) 32

(c) 32

(d) 1

Show Answer

Solution

(a) Given, limx0x2cosx1cosx=limx0x2cosx2sin2x2

[1cosx=2sin2x2]

=2limx0x2sin2x2limx0cosx=21=2

56. limx0(1+x)n1x is equal to

(a) n

(b) 1

(c) n

(d) 0

Show Answer

Solution

(a) Given, limx0(1+x)n1x=limx0(1+x)n1(1+x)1=limx0(1+x)n1(1+x)1

=limx0(1+x)n1n(1+x)1=lim(1+x)1(1+x)n1n(1+x)1=n(1)n1=nlimxaxnanxa=nan1

57. limx1xm1xn1 is equal to

(a) 1

(b) mn

(c) mn

(d) m2n2

Show Answer

Solution

(b) Given, limx1xm1xn1=limx1xm1x1xn1x1=limx1xm1mx1limx1xn1nx1

=m(1)m1n(1)n1=mn[limxaxnanxa=nan1]

58. limθ01cos4θ1cos6θ is equal to

(a) 49

(b) 12

(c) 12

(d) -1

Show Answer

Solution

(a) Given, limθ01cos4θ1cos6θ=limθ02sin22θ2sin23θ

[1cos2θ=2sin2θ]

=limθ0sin22θ(2θ)2(2θ)2limθ0sin23θ(3θ)2(3θ)2=49limθ0(sin2θ2θ)2limθ0(sin3θ3θ)2[limx0sinxx=1 and x0kx0]=49

59. limx0cosecxcotxx is equal to

(a) 12

(b) 1

(c) 12

(d) 1

Show Answer

Solution

(c) Given,

limx0cosecxcotxx=limx01sinxcosxsinxx=limx01cosxxsinx=limx02sin2x2x2sinx2cosx2=limx0tanx2x=limx0tanx2x212=12

[limθ0tanθθ=1]

60. limx0sinxx+11x is equal to

(a) 2

(b) 0

(c) 1

(d) -1

Show Answer

Solution

(c) Given, limx0sinxx+11x

=limx0sinxx+11xx+1+1xx+1+1x=limx0sinx(x+1+1x)(x+1)(1x)=limx0sinx(x+1+1x)x+11+x=12limx0sinxxlimx0(x+1+1x)=1212=1

61. limxπ/4sec2x2tanx1 is

(a) 3

(b) 1

(c) 0

(d) 2

Show Answer

Solution

(d) Given,

limxπ/4sec2x2tanx1=limxπ/41+tan2x2tanx1=limxπ/4tan2x1tanx1=limxπ/4(tanx+1)(tanx1)(tanx1)=limxπ/4(tanx+1)=2

62. limx1(x1)(2x3)2x2+x3 is equal to

(a) 110

(b) 110

(c) 1

(d) None of these

Show Answer

Solution

(b) Given, limx1(x1)(2x3)2x2+x3=limx1(x1)(2x3)(2x+3)(x1)

=limx1(x1)(2x3)(2x+3)(x1)(x+1)=limx12x3(2x+3)(x+1)=15×2=110

63. If f(x)={sin[x][x],[x]0, where [] denotes the greatest integer 0,[x]=0

function, then limx0f(x) is equal to

(a) 1

(b) 0

(c) -1

(d) Does not exist

Show Answer

Solution

(d) Given,

f(x)= {sin[x][x],[x]00,[x]=0

LHL=limx0f(x)

=limx0sin[x][x]=limh0sin[0h][0h]=limh0sin[h][h]=1RHL=limx0+f(x)=limx0+sin[x][x]=limx0+sin[0+h][0+h]=limh0sin[h][h]=1

LHLRHL

So, limit does not exist.

64. limx0|sinx|x is equal to

(a) 1

(b) =1

(c) Does not exist

(d) None of these

Show Answer

Solution

(c) Given,

 limit =limx0|sinx|xLHL=limx0sinxx=limx0sinxx=1RHL=limx0+sinxx=1

LHLRHL

So, limit does not exist.

65. If f(x)={x21,0<x<22x+3,2x<33 then the quadratic equation whose roots are limx2f(x) and limf(x)x2+ is

(a) x26x+9=0

(b) x27x+8=0

(c) x214x+49=0

(d) x210x+21=0

Show Answer

Solution

(d) Given,

f(x)={x21,0<x<22x+3,2x<3

limx2f(x)=limx2(x21)=limh0[(2h)21]=limh0(4+h24h1)=limh0(h24h+3)=3

and limx2+f(x)=limx2+(2x+3)

=limh0[2(2+h)+3]=limh0(4+2h+3)=7

So, the quadratic equation whose roots are 3 and 7 is x2(3+7)x+3×7=0 i.e., x210x+21=0.

66. limx0tan2xx3xsinx is equal to

(a) 2

(b) 12

(c) 12

(d) 14

Show Answer

Solution

(b) Given,

limx0tan2xx3xsinx=limx0x[tan2xx1]x[3sinxx]=limx02×tan2x2x13limx0sinxx=2131=12

67. If f(x)=x[x],R, then f12 is equal to

(a) 32

(b) 1

(c) 0

(d) -1

Show Answer

Solution

(b) Given, f(x)=x[x]

Now, first we have to check the differentiability of f(x) at x=12.

Lf12=LHD=limh0f(12h)f(12)h

=limn0(12h)(12h)12+12h=limh0121h012+0=1h

and Rf12=RHDlimh0f(12+h)f(12)h

=limh012+h12+h12+12h=limh012+h012+0h=1

LHL=RHD

f12=1

68. If y=x+1x, then dydx at x=1 is equal to

(a) 1

(b) 12

(c) 12

(d) 0

Show Answer

Solution

(d) Given,

 Now, dydx=1212=0

y=x+1x

69. If f(x)=x42x, then f(1) is equal to

(a) 54

(b) 45

(c) 1

(d) 0

Show Answer

Solution

(a) Given,

f(x)5=x42x

 Now, f(x)=2x(x4)212x4x=2x(x4)4x3/2=2xx+44x3/2=x+44x3/2f(1)=1+44×(1)3/2=54

70. If y=1+1x211x2, then dydx is equal to

(a) 4x(x21)2

(b) 4xx21

(c) 1x24x

(d) 4xx21

Show Answer

Solution

(a) Given,

y=1+1x211x2y=x2+1x21dydx=(x21)2x(x2+1)(2x(x21)2dydx=2x(x21x21)(x21)2=2x(2)(x21)2=4x(x21)2

dydx=(x21)2x(x2+1)(2x)(x21)2 [by quotient rule] 

71. If y=sinx+cosxsinxcosx, then dydx at x=0 is equal to

(a) -2

(b) 0

(c) 12

(d) Does not exist

Show Answer

Solution

(a) Given, y=sinx+cosxsinxcosx

dydx=(sinxcosx)(cosxsinx)(sinx+cosx)(cosx+sinx)(sinxcosx)2 [by quotient rule] =(sinxcosx)2(sinx+cosx)2(sinxcosx)2=[(sinxcosx)2+(sinx+cosx)2](sinxcosx)2=[sin2x+cos2x2sinxcosx+sin2x+cos2x+2sinxcosx](sinxcosx)2=2(sinxcosx)2dydx=2

72. If y=sin(x+9)cosx, then dydx at x=0 is equal to

(a) cos9

(b) sin9

(c) 0

(d) 1

Show Answer

Solution

(a) Given, y=sin(x+9)cosx

dydx=cosxcos(x+9)sin(x+9)(sinx)(cosx)2 [by quotient rule] =cosxcos(x+9)+sinxsin(x+9)cos2xdydxx=0=cos91=cos9

73. If f(x)=1+x+x22++x100100, then f(1) is equal to

(a) 1100

(b) 100

(c) 0

(d) Does not exist

Show Answer

Solution

(b) Given,

f(x)=1+x+x22++x100100

f(x)=0+1+2×x2++100x99100f(x)=1+x+x2++x99f(1)=1+1+1++1 (100 times) =100

74. If f(x)=xnanxa for some constant a, then f(a) is equal to

(a) 1

(b) 0

(c) 12

(d) Does not exist

Show Answer

Solution(d) Given,

f(x)=xnanxa

f(x)=(xa)nxn1(xnan)(1)(xa)2 [by quotient rule] f(x)=nxn1(xa)xn+an(xa)2 Now, f(a)=nan1(0)an+an(xa)2f(a)=00

So, f(a) does not exist,

Since, f(x) is not defined at x=a.

Hence, f(x) at x=a does not exist.

75. If f(x)=x100+x99++x+1, then f(1) is equal to

(a) 5050

(b) 5049

(c) 5051

(d) 50051

Show Answer

Solution

(a) Given,

f(x)=x100+x99++x+1

f(x)=100x99+99x98++1+0=100x99+99x98++1 Now, f(1)=100+99++1=1002[2×100+(1001)(1)]=50[20099]=50×101=5050

76. If f(x)=1x+x2x3+x99+x100, then f(1) is equal to

(a) 150

(b) -50

(c) -150

(d) 50

Show Answer

Solution

(d) Given, f(x)=1x+x2x3+x99+x100

f(x)=01+2x3x2+99x98+100x99=1+2x3x2+99x98+100x99f(1)=1+23+99+100=(13599)+(2+4++100)Sn=n22a+(n1)d=502[2×1+(501)2]+502[2×2+(501)2]=25[2+49×2]+25[4+49×2]=25(2+98)+25(4+98)=25×100+25×102=2500+2550=50

Fillers

77. If f(x)=tanxxπ, then limxπf(x)= ……

Show Answer

Solution

Given, f(x)=tanxxπ=limxπtanxxπ=limπx0tan(πx)(πx)[limx0tanxx=1]

=1

78. limx0sinmxcotx3=2, then m= ……

Show Answer

Solution

Given, limx0sinmxcotx3=2

limx0sinmxmxmx1tanx3=2limx0sinmxmxmxx3tanx31x3=2limx0sinmxmxlimx0x3tanx3limx0mxx3=23x=2m=233

79. If y=1+x1!+x22!+x33!+, then dydx= ……

Show Answer

Solution

Given,

y=1+x1!+x22!+x33!+x44!+dydx=0+1+2x2+3x26+4x34!=1+x+x22+x36+=1+x1!+x22!+x33!+=y

80. limx3+x[x]= ……

Show Answer

Solution

Given,

limx3+x[x]=limh0(3+h)[3+h]=limh0(3+h)3=1



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane