Introduction to Three Dimensional Geometry

Short Answer Type Questions

1. Locate the following points

(i) $(1,-1,3)$

(ii) $(-1,2,4)$

(iii) $(-2,-4,-7)$

(iv) $(-4,2,-5)$

Show Answer

Solution

Given, coordinates are

(i) $(1,-1,3)$

(ii) $B(-1,2,4)$

(iii) $C(-2,-4,-7)$

(iv) $D(-4,2,-5)$

X-increment $=Y$-increment $=Z$-increment $=1$

2. Name the octant in which each of the following points lies.

(i) $(1,2,3)$

(ii) $(4,-2,3)$

(iii) $(4,-2,-5)$

(iv) $(4,2,-5)$

(v) $(-4,2,5)$

(iv) $(-3,-1,6)$

(vii) $(2,-4,-7)$

(viii) $(-4,2,-5)$.

Show Answer

Solution

(i) Point $(1,2,3)$ lies in first quadrant.

(ii) $(4,-2,3)$ in fourth octant.

(iii) $(4,-2,-5)$ in eight octant.

(iv) $(4,2,-5)$ in fifth octant.

(v) $(-4,2,5)$ in second octant.

(vi) $(-3,-1,6)$ in third octant.

(vii) $(2,-4,-7)$ in eight octant.

(viii) $(-4,2,-5)$ in sixth octant.

3. If $A, B, C$ be the feet of perpendiculars from a point $P$ on the $X, Y$ and $Z$-axes respectively, then find the coordinates of $A, B$ and $C$ in each of the following where the point $P$ is

(i) $A(3,4,2)$

(iii) $C(4,-3,-5)$

(ii) $B(-5,3,7)$

Show Answer

Solution

The coordinates of $A, B$ and $C$ are the following

(i) $A(3,0,0), B(0,4,0), C(0,0,2)$

(ii) $A(-5,0,0), B(0,3,0), C(0,0,7)$

(iii) $A(4,0,0), B(0,-3,0), C(0,0,-5)$

4. If $A, B$, and $C$ be the feet of perpendiculars from a point $P$ on the $X Y, Y Z$ and $Z X$-planes respectively, then find the coordinates of $A, B$ and $C$ in each of the following where the point $P$ is

(i) $(3,4,5)$

(ii) $(-5,3,7)$

(iii) $(4,-3,-5)$

Show Answer

Solution

We know that, on $X Y$-plane $z=0$, on YZ-plane, $x=0$ and on ZX-plane, $y=0$. Thus, the coordinate of $A, B$ and $C$ are following

(i) $A(3,4,0), B(0,4,5), C(3,0,5)$

(ii) $A(-5,3,0), B(0,3,7), C(-5,0,7)$

(iii) $A(4,-3,0), B(0,-3,-5), C(4,0,-5)$

5. How far apart are the points $(2,0,0)$ and $(-3,0,0)$ ?

Thinking Process

Distance between two points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$

$ d=\sqrt{(x_1-x_2)^{2}+(y_1-y_2)^{2}+(z_1-z_2)^{2}} . $

Show Answer

Solution

Given points, $A(2,0,0)$ and $B(-3,0,0)$

$ A B=\sqrt{(2+3)^{2}+0^{2}+0^{2}}=5 $

6. Find the distance from the origin to $(6,6,7)$.

Show Answer

Solution

Distance from origin to the point $(6,6,7)$

$ \begin{aligned} & =\sqrt{(0-6)^{2}+(0-6)^{2}+(0-7)^{2}} \quad[\because d=\sqrt{(x_1-x_2)^{2}+(y_1-y_2)^{2}+(z_1-z_2)^{2}}] \\ & =\sqrt{36+36+49} \\ & =\sqrt{121}=11 \end{aligned} $

7. Show that, if $x^{2}+y^{2}=1$, then the point $(x, y, \sqrt{1-x^{2}-y^{2}})$ is at a distance 1 unit form the origin.

Show Answer

Solution

Given that, $x^{2}+y^{2}=1$

$\therefore \quad$ Distance of the point $(x, y, \sqrt{1-x^{2}-y^{2}})$ from origin is given as

$ \begin{aligned} d & =|\sqrt{x^{2}+y^{2}+(\sqrt{1-x^{2}-y^{2}})^{2}}| \\ & =|\sqrt{x^{2}+y^{2}+1-x^{2}-y^{2}}|=1 \end{aligned} $

Hence proved.

8. Show that the point $A(1,-1,3), B(2,-4,5)$ and $C(5,-13,11)$ are collinear.

Thinking Process

If the three points $A, B$, and $C$ are collinear, then $A B+B C=A C$.

Show Answer

Solution

Given points, $A(1,-1,3), B(2,-4,5)$ and $C(5,-13,11)$.

$ \begin{aligned} A B & =\sqrt{(1-2)^{2}+(-1+4)^{2}+(3-5)^{2}} \\ & =\sqrt{1+9+4}=\sqrt{14} \\ B C & =\sqrt{(2-5)^{2}+(-4+13)^{2}+(5-11)^{2}} \\ & =\sqrt{9+81+36}=\sqrt{126} \\ A C & =\sqrt{(1-5)^{2}+(-1+13)^{2}+(3-11)^{2}} \\ & =\sqrt{16+144+64}=\sqrt{224} \\ \because \quad A B+B C & =A C \\ \Rightarrow \quad \sqrt{14}+\sqrt{126} & =\sqrt{224} \\ \Rightarrow \quad \sqrt{14}+3 \sqrt{14} & =4 \sqrt{14} \end{aligned} $

So, the points $A, B$ and $C$ are collinear.

9. Three consecutive vertices of a parallelogram $A B C D$ are $A(6,-2,4)$, $B(2,4,-8)$ and $C(-2,2,4)$. Find the coordinates of the fourth vertex.

Show Answer

Solution

Let the coordinates of the fourth vertices $D(x, y, z)$.

Mid-points of diagonal $A C$,

and

$ \begin{aligned} & x=\frac{x_1+x_2}{2}, y=\frac{y_1+y_2}{2}, z=\frac{z_1+z_2}{2} \\ & x=\frac{6-2}{2}=2, y=\frac{-2+2}{2}=0, z=\frac{4+4}{2}=4 \end{aligned} $

Since, the mid-point of $A C$ are $(2,0,4)$.

Now, $\quad$ mid-point of $B D, 2=\frac{x+2}{2} \Rightarrow x=2$

$\Rightarrow \quad 0=\frac{y+4}{2} \Rightarrow y=-4$

$\Rightarrow \quad 4=\frac{z-8}{2} \Rightarrow z=16$

So, the coordinates of fourth vertex $D$ is $(2,-4,16)$.

10. Show that the $\triangle A B C$ with vertices $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$ is right angled.

Thinking Process

In a right angled triangle sum of the square of two sides is equal to square of third side.

Show Answer

Solution

Given that, the vertices of the $\triangle A B C$ are $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$. Now,

$ \begin{aligned} A B & =\sqrt{(0-2)^{2}+(4-3)^{3}+(1+1)^{2}} \\ & =\sqrt{4+1+4}=3 \\ B C & =\sqrt{(2-4)^{2}+(3-5)^{2}+(-1-0)^{2}} \\ & =\sqrt{4+4+1}=3 \\ A C & =\sqrt{(0-4)^{2}+(4-5)^{2}+(1-0)^{2}} \\ & =\sqrt{16+1+1}=\sqrt{18} \end{aligned} $

$ \begin{matrix} \because & A C^{2}=A B^{2}+B C^{2} \\ \Rightarrow & 18=9+9 \end{matrix} $

Hence, vertices $\triangle A B C$ is a right angled triangle.

11. Find the third vertex of triangle whose centroid is origin and two vertices are $(2,4,6)$ and $(0,-2,5)$.

Thinking Process

The vertices of the $\triangle A B C$ are $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$, then the

coordinates of the centroid Gare $\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}$.

Show Answer

Solution

Let third vertex of $\triangle A B C$ i.e., is $A(x, y, z)$.

$(2,4,6)$

Given that, the coordinate of centroid $G$ are $(0,0,0)$.

$\because \quad \begin{aligned} 0 & =\frac{x+2+0}{3} \Rightarrow x=-2 \\ 0 & =\frac{y+4-2}{3} \Rightarrow y=-2 \\ 0 & =\frac{z+6-5}{2} \Rightarrow z=-1\end{aligned}$

Hence, the third vertex of triangle is $(-2,-2,-1)$.

12. Find the centroid of a triangle, the mid-point of whose sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.

Show Answer

Solution

Given that, mid-points of sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.

Let the vertices of the $\triangle A B C$ are $A(x_1, y_1, z_1), B(x_2, y_2, z_3)$ and $C(x_3, y_3, z_3)$.

Then, mid-point of $B C$ are $(1,2,-3)$.

$ \begin{aligned} 1 & =\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=2 \\ 2 & =\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=4 \\ -3 & =\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=-6 \end{aligned} $

Similarly for the sides $A B$ and $A C$,

$ \begin{matrix} \Rightarrow & -1=\frac{x_1+x_2}{2} \Rightarrow x_1+x_2=-2 \\ \Rightarrow & 1=\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=2 \\ \Rightarrow & -4=\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=-8 \\ \Rightarrow & 3=\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=6 \\ \Rightarrow & 0=\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=0 \\ \Rightarrow & 1=\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=2 . \end{matrix} $

On adding Eqs. (i) and (iv), we get

On adding Eqs. (ii) and (v), we get

$ x_1+2 x_2+x_3=0 $

On adding Eqs. (iii) and (vi), we get

$ y_1+2 y_2+y_3=6 $

From Eqs. (vii) and (x),

$ z_1+2 z_2+z_3=-14 $

If $x_2=-3$, then $x_3=5$

$ 2 x_2=-6 \Rightarrow x_2=-3 $

If $x_3=5$, then $x_1=1, x_2=-3, x_3=5$

From Eqs. (xi) and (viii),

$ 2 y_2=6 \Rightarrow y_2=3 $

If $y_2=3$, then $y_1=-1 \quad$ If $y_1=-1$, then $y_3=1, \quad y_2=3, y_3=1$

From Eqs. (xii) and (ix),

$ \begin{gathered} 2 z_2=-16 \Rightarrow z_2=-8 \\ z_2=-8, \text { then } z_1=0 \\ z_1=0, \text { then } z_3=2 \\ z_1=0, z_2=-8, z_3=2 \end{gathered} $

So, the points are $A(1-1,0), B(-3,3,-8)$ and $C(5,1,2)$.

$\therefore$ Centroid of the triangle $=G \frac{1-3+5}{3}, \frac{-1+3+1}{3}, \frac{0-8+2}{3}$ i.e., $G(1,1,-2)$

13. The mid-points of the sides of a triangle are $(5,7,11),(0,8,5)$ and $(2,3,-1)$. Find its vertices.

Show Answer

Solution

Let vertices of the $\triangle A B C$ are $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$, then the mid-point of $B C(5,7,11)$.

$ \begin{aligned} & 5=\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=10 \\ & 7=\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=14 \\ & 11=\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=22 \end{aligned} $

Similarly for the sides $A B$ and $A C$,

$ \begin{gathered} 2=\frac{x_1+x_2}{2} \Rightarrow x_1+x_2=4 \\ 3=\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=6 \\ -1=\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=-2 \\ 0=\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=0 \\ 8=\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=16 \\ 5=\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=10 \end{gathered} $

From Eqs. (i) and (iv),

$ x_1+2 x_2+x_3=14 $

From Eqs. (ii) and (v),

From Eqs. (iii) and (vi),

$ y_1+2 y_2+y_3=20 $

From Eqs. (vii) and (x),

From Eqs. (viii) and (xi),

$ z_1+2 z_2+z_3=20 $

$ \begin{aligned} 2 x_2 & =14 \Rightarrow x_2=7 \\ x_2 & =7, \text { then } x_3=10-7=3 \\ x_3 & =3, \text { then } x_1=-3 \\ x_1 & =-3, x_2=7, x_3=3 \end{aligned} $

$ \begin{aligned} 2 y_2 & =4 \Rightarrow y_2=2 \\ y_2 & =2, \text { then } y_1=4 \\ y_1 & =4, \text { then } y_3=12 \\ y_1 & =4, y_2=2, y_3=12 \end{aligned} $

From Eqs. (ix) and (xii),

$ \begin{aligned} 2 z_2 & =10 \Rightarrow z_2=5 \\ z_2 & =5, \text { then } z_1=-7 \\ z_1 & =-7, \text { then } z_3=17 \\ z_1 & =-7, z_2=5, z_3=17 \end{aligned} $

So, the vertices are $A(-3,4,-7), B(7,2,5)$ and $C(3,12,17)$.

14. If the vertices of a parallelogram $A B C D$ are $A(1,2,3), B(-1,-2,-1)$ and $C(2,3,2)$, then find the fourth vertex $D$.

Thinking Process

The diagonal of a parallelogram have the same vertices. Use this property to solve the problem.

Show Answer

Solution

Let the fourth vertex of the parallelogram $A B C D$ is $D(x, y, z)$. Then, the mid-point of $A C$ are

$ P \frac{1+2}{2}, \frac{2+3}{2}, \frac{3+2}{2} \text { i.e., } P \frac{3}{2}, \frac{5}{2}, \frac{5}{2} \text {. } $

Now, mid-point of $B D$,

$ \begin{aligned} & \frac{3}{2}=\frac{-1+x}{2} \Rightarrow x=4 \\ & \frac{5}{2}=\frac{-2+y}{2} \Rightarrow y=7 \\ & \frac{5}{2}=\frac{-1+z}{2} \Rightarrow z=6 \end{aligned} $

So, the coordinates of fourth vertex is $(4,7,6)$.

15. Find the coordinate of the points which trisect the line segment joining the points $A(2,1,-3)$ and $B(5,-8,3)$.

Thinking Process

If point $P$ divided line segment joint the point $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ in $m_1: m_2$ internally then the coordinate of $P$ are $\frac{m_1 x_2+m_2 x_1}{m_1+m_2}, \frac{m_1 y_2+m_2 y_1}{m_1+m_2}, \frac{m_1 z_2+m_2 z_1}{m_1+m_2}$

Show Answer

Solution

Let the $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ trisect line segment $A B$.

Since, the point $P$ divided line $A B$ in $1: 2$ internally, then

$ \begin{aligned} & x_1=\frac{2 \times 2+1 \times 5}{1+2}=\frac{9}{3}=3 \\ & y_1=\frac{2 \times 1+1 \times(-8)}{3}=\frac{-6}{3}=-2 \\ & z_1=\frac{2 \times(-3)+1 \times 3}{3}=\frac{-6+3}{3}=\frac{-3}{3}=-1 \end{aligned} $

Since, the point $Q$ divide the line segment $A B$ in $2: 1$, then

$ \begin{aligned} & x_2=\frac{1 \times 2+2 \times 5}{3}=4, \\ & y_2=\frac{1 \times 1+(-8 \times 2)}{3}=-5 \\ & z_2=\frac{1 \times(-3)+2 \times 3}{3}=-1 \end{aligned} $

So, the coordinates of $P$ are $(3,-2,-1)$ and the coordinates of $Q$ are $(4,-5,1)$.

16. If the origin is the centroid of a $\triangle A B C$ having vertices $A(a, 1,3)$, $B(-2, b,-5)$ and $C(4,7, c)$, then find the values of $a, b, c$.

Show Answer

Solution

Given that origin is the centroid of the $\triangle A B C$ i.e., $G(0,0,0)$.

$\begin{array}{ll} \because \quad 0=\frac{a-2+4}{3} \Rightarrow a=-2 \\ 0=\frac{1+b+7}{3} \Rightarrow b=-8 \\ \quad 0=\frac{3-5+c}{3} \Rightarrow c=+2 \\ \therefore \quad a=-2, b=-8 \text { and } c=2 \end{array}$

17. If $A(2,2,-3), B(5,6,9), C(2,7,9)$ be the vertices of a triangle. The internal bisector of the angle $A$ meets $B C$ at the point $D$, then find the coordinates of $D$.

Show Answer

Solution

Let the coordinates of $D$ are $(x, y, z)$.

$ \begin{aligned} A B & =\sqrt{9+16+144}=\sqrt{169}=13 \\ A C & =\sqrt{0+25+144}=\sqrt{169}=\sqrt{13} \\ \frac{A B}{A C} & =\frac{13}{13} \Rightarrow A B=A C \\ \frac{B D}{D C} & =\frac{1}{1} \Rightarrow B D=D C \end{aligned} $

$ \Rightarrow \quad \frac{A B}{A C}=\frac{13}{13} \Rightarrow A B=A C $

Since, $D$ is divide the line $B C$ in two equal parts. So, $D$ is the mid-point of $B C$.

$ \begin{matrix} \therefore & x=\frac{5+2}{2}=7 / 2 \\ \Rightarrow & y=\frac{6+7}{2}=13 / 2 \\ \Rightarrow & z=\frac{9+9}{2}=9 \end{matrix} $

So, the coordinates of $D$ are $\frac{7}{2}, \frac{13}{2}, 9$.

Long Answer Type Questions

18. Show that the three points $A(2,3,4), B(1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which $C$ divides $A B$.

Show Answer

Solution

Given points are $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$.

$ \begin{aligned} & \therefore \quad A B=\sqrt{(2+1)^{2}+(3-2)^{2}+(4+3)^{2}} \\ & =\sqrt{9+1+49}=\sqrt{59} \\ & B C=\sqrt{(-1+4)^{2}+(2-1)^{2}+(-3+10)^{2}} \\ & =\sqrt{9+1+49}=\sqrt{59} \\ & A C=\sqrt{(2+4)^{2}+(3-1)^{2}+(4+10)^{2}} \\ & =\sqrt{36+4+196} \\ & =\sqrt{236}=2 \sqrt{59} \\ & A B+B C=\sqrt{59}+\sqrt{59}=2 \sqrt{59} \end{aligned} $

19. The mid-point of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices and also find the centroid of the triangle.

Show Answer

Solution

Let the vertices of $\triangle A B C$ are $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$.

Since, the mid-point of side $B C$ is $D(1,5,-1)$.

Then,

$ \begin{aligned} & \frac{x_2+x_3}{2}=1 \Rightarrow x_2+x_3=2 \\ & \frac{y_2+y_3}{2}=5 \Rightarrow y_2+y_3=10 \\ & \frac{z_2+z_3}{2}=-1 \Rightarrow z_2+z_3=-2 \end{aligned} $

Similarly, the mid-points of $A B$ and $A C$ are $F(2,3,4)$ and $E(0,4,-2)$,

and

$ \begin{aligned} & \frac{x_1+x_2}{2}=2 \Rightarrow x_1+x_2=4 \\ & \frac{y_1+y_2}{2}=3 \Rightarrow y_1+y_2=6 \\ & \frac{z_1+z_2}{2}=4 \Rightarrow z_1+z_2=8 \end{aligned} $

Now,

$ \begin{gathered} \frac{x_1+x_3}{2}=0 \Rightarrow x_1+x_3=0 \\ \frac{y_1+y_3}{2}=4 \Rightarrow y_1+y_3=8 \\ \frac{z_1+z_3}{2}=-2 \Rightarrow z_1+z_3=-4 \end{gathered} $

From Eqs. (i) and (iv),

From Eqs. (ii) and (v),

$ x_1+2 x_2+x_3=6 $

From Eqs. (iii) and (vi),

$ y_1+2 y_2+y_3=16 $

From Eqs. (vii) and (x),

Then,

$ z_1+2 z_2+z_3=6 $

From Eqs. (viii) and (xi),

Then,

$ \begin{aligned} 2 x_2 & =6 \Rightarrow x_2=3 \\ x_2 & =3, \text { then } x_3=-1 \\ x_3 & =-1 \\ x_1 & =1 \Rightarrow x_1=1, x_2=3, x_2=-1 \end{aligned} $

$ \begin{aligned} 2 y_2 & =8 \Rightarrow y_2=4 \\ y_2 & =4 \\ y_1 & =2 \\ y_1 & =2 \\ y_3 & =6 \\ y_1 & =2, y_2=4, y_3=6 \end{aligned} $

$ \Rightarrow $

From Eqs. (ix) and (xii),

Then,

$ \begin{aligned} 2 z_2 & =10 \Rightarrow z_2=5 \\ z_2 & =5 \end{aligned} $

$ z_1=3 $

$ z_1=3, $

Then,

$ z_3=-7 $

$\Rightarrow$

$ z_1=3, z_2=5, z_3=-7 $

So, the vertices of the triangle $A(1,2,3), B(3,4,5)$ and $C(-1,6,-7)$.

Hence, centroid of the triangle $G \frac{1+3-1}{3}, \frac{2+4+6}{3}, \frac{3+5-7}{3}$ i.e., $G(1,4,1 / 3)$.

20. Prove that the points $(0,-1,-7),(2,1,-9)$ and $(6,5,-13)$ are collinear. Find the ratio in which the first point divides the join of the other two.

Thinking Process

First of all find the value of $A B, A C$ and $B C$ using distance formula i.e. $\sqrt{(x_1-x_2)^{2}+(y_1-y_2)+(z_1-z_2)^{2}}$, then show that $A B+B C=A C$ for collinearity of the points $A, B$ and $C$.

Show Answer

Solution

Given points are $A(0,-1,-7), B(2,1,-9)$ and $C(6,5,-13)$

$ \begin{aligned} & A B=\sqrt{(0-2)^{2}+(-1-1)^{2}+(-7+9)^{2}}=\sqrt{4+4+4}=2 \sqrt{3} \\ & B C=\sqrt{(2-6)^{2}+(1-5)^{2}+(-9+13)^{2}}=\sqrt{16+16+16}=4 \sqrt{3} \\ & A C=\sqrt{(0-6)^{2}+(-1-5)^{2}+(-7+13)^{2}}=\sqrt{36+36+36}=6 \sqrt{3} \end{aligned} $

$ \begin{matrix} \because & A B+B C=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3} \\ \text { So, } & A B+B C=A C \\ \text { Hence, the points } A, B \text { and } C \text { are collinear. } \\ & A \quad B \quad B \\ & A B: A C=2 \sqrt{3}: 6 \sqrt{3}=1: 3 \end{matrix} $

So, point $A$ divide $B$ and $C$ in $1: 3$ externally,

21. What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?

Show Answer

Solution

The coordinates of the cube which edge is 2 units, are $(2,0,0),(2,2,0),(0,2,0)$, $(0,2,2),(0,0,2),(2,0,2),(0,0,0)$ and $(2,2,2)$.

Objective Type Questions

22. The distance of point $P(3,4,5)$ from the $Y Z$-plane is

(a) 3 units

(b) 4 units

(c) 5 units

(d) 550

Show Answer

Solution

(a) Given, point is $P(3,4,5)$.

Distance of $P$ from YZ-plane, $\quad[\because Y Z$-plane, $x=0]$

$ d=\sqrt{(0-3)^{2}+(4-4)^{2}+(5-5)^{2}}=3 $

23. What is the length of foot of perpendicular drawn from the point $P$ $(3,4,5)$ on $Y$-axis?

(a) $\sqrt{41}$

(b) $\sqrt{34}$

(c) 5

(d) None of these

Show Answer

Solution

(b) We know that, on the $Y$-axis, $x=0$ and $z=0$.

$\therefore$ Point $A(0,4,0)$,

$ \begin{aligned} P A & =\sqrt{(0-3)^{2}+(4-4)^{2}+(0-5)^{2}} \\ & =\sqrt{9+0+25}=\sqrt{34} \end{aligned} $

24. Distance of the point $(3,4,5)$ from the origin $(0,0,0)$ is

(a) $\sqrt{50}$

(b) 3

(c) 4

(d) 5

Show Answer

Solution

(a) Given, points $P(3,4,5)$ and $O(0,0,0)$,

$ \begin{aligned} P O & =\sqrt{(0-3)^{2}+(0-4)^{2}+(0-5)^{2}} \\ & =\sqrt{9+16+25}=\sqrt{50} \end{aligned} $

25. If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{27}$, then the value of $a$ is

(a) 5

(b) $\pm 5$

(c) -5

(d) None of these

Show Answer

Solution

(b) Given, the points are $A(a, 0,1)$ and $B(0,1,2)$.

$ \begin{matrix} \therefore & A B=\sqrt{(a-0)^{2}+(0-1)^{2}+(1-2)^{2}} \\ \Rightarrow & \sqrt{27}=\sqrt{a^{2}+1+1} \\ \Rightarrow & 27=a^{2}+2 \\ \Rightarrow & a^{2}=25 \\ \Rightarrow & a= \pm 5 \end{matrix} $

26. $X$-axis is the intersection of two planes

(a) $X Y$ and $X Z$

(b) $Y Z$ and $Z X$

(c) $X Y$ and $Y Z$

(d) None of these

Show Answer

Solution

(a) We know that, on the $X Y$ and $X Z$-planes, the line of intersection is $X$-axis.

27. Equation of $Y$-axis is considered as

(a) $x=0, y=0$

(b) $y=0, z=0$

(c) $z=0, x=0$

(d) None of these

Show Answer

Solution

(c) On the Y-axis, $x=0$ and $z=0$.

28. The point $(-2,-3,-4)$ lies in the

(a) first octant

(b) seventh octant

(c) second octant

(d) eight octant

Show Answer

Solution

(b) The point $(-2,-3,-4)$ lies in seventh octant.

29. A plane is parallel to $Y Z$-plane, so it is perpendicular to

(a) $X$-axis

(b) $Y$-axis

(c) Z-axis

(d) None of these

Show Answer

Solution

(a) A plane is parallel to YZ-plane, so it is perpendicular to $X$-axis.

30. The locus of a point for which $y=0$ and $z=0$, is

(a) equation of $X$-axis

(b) equation of $Y$-axis

(c) equation at Z-axis

(d) None of these

Show Answer

Solution

(a) We know that, equation on the $X$-axis, $y=0, z=0$. So, the locus of the point is equation of $X$-axis.

31. The locus of a point for which $x=0$ is

(a) $X Y$-plane

(b) YZ-plane

(c) ZX-plane

(d) None of these

Show Answer

Solution

(b) On the YZ-plane, $x=0$, hence the locus of the point is $Y Z$-plane.

32. If a parallelopiped is formed by planes drawn through the points $(5,8,10)$ and $(3,6,8)$ parallel to the coordinate planes, then the length of diagonal of the parallelopiped is

(a) $2 \sqrt{3}$

(b) $3 \sqrt{2}$

(c) $\sqrt{2}$

(d) $\sqrt{3}$

Show Answer

Solution

(a) Given points of the parallelopiped are $A(5,8,10)$ and $B(3,6,8)$.

$ \begin{aligned} \therefore \quad A B & =\sqrt{(5-3)^{2}+(6-8)^{2}+(10-8)^{2}} \\ & =\sqrt{4+4+4}=2 \sqrt{3} \end{aligned} $

33. $L$ is the foot of the perpendicular drawn from a point $P(3,4,5)$ on the $X Y$-plane. The coordinates of point $L$ are

(a) $(3,0,0)$

(b) $(0,4,5)$

(c) $(3,0,5)$

(d) None of these

Show Answer

Solution

(d) We know that, on the $X Y$-plane $z=0$. Hence, the coordinates of the points $L$ are $(3,4,0)$.

34. $L$ is the foot of the perpendicular drawn from a point $(3,4,5)$ on $X$-axis. The coordinates of $L$ are

(a) $(3,0,0)$

(b) $(0,4,0)$

(c) $(0,0,5)$

(d) None of these

Show Answer

Solution

(a) On the X-axis, $y=0$ and $z=0$

Hence, the required coordinates are $(3,0,0)$.

Fillers

35. The three axes $O X, O Y$ and $O Z$ determine ……

Show Answer

Solution

The three axes $O X, O Y$ and $O Z$ determine three coordinates planes.

36. The three planes determine a rectangular parallelopiped which has …… of rectangular faces.

Show Answer

Solution

Three points

37. The coordinates of a point are the perpendicular distance from the …… on the respectives axes.

Show Answer

Solution

Given points

38. The three coordinate planes divide the space into …… parts.

Show Answer

Solution

Eight parts

39. If a point $P$ lies in $Y Z$-plane, then the coordinates of a point on $Y Z$-plane is of the form ……

Show Answer

Solution

We know that, on YZ-plane, $x=0$. So, the coordinates of the required point is $(0, y, z)$.

40. The equation of $Y Z$-plane is ……

Show Answer

Solution

The equation of YZ-plane is $x=0$.

41. If the point $P$ lies on $Z$-axis, then coordinates of $P$ are of the form ……

Show Answer

Solution

On the $Z$-axis, $x=0$ and $y=0$. So, the required coordinates are $(0,0, z)$.

42. The equation of $Z$-axis, are ……

Show Answer

Solution

The equation of $Z$-axis, $x=0$ and $y=0$.

43. $A$ line is parallel to $X Y$-plane if all the points on the line have equal ……

Show Answer

Solution

z-coordinates.

44. $A$ line is parallel to $X$-axis, if all the points on the line have equal ……

Show Answer

Solution

$y$ and $z$-coordinates.

45. $x=a$ represent a plane parallel to ……

Show Answer

Solution

$x=$ a represent a plane parallel to $Y Z$-plane.

46. The plane parallel to $Y Z$-plane is perpendicular to ……

Show Answer

Solution

The plane parallel to $Y Z$-plane is perpendicular to $X$-axis.

47. The length of the longest piece of a string that can be stretched straight in a rectangular room whose dimensions are 10,13 and 8 units are ……

Show Answer

Solution

Given dimensions are $a=10, b=13$ and $c=8$.

$ \begin{aligned} \therefore \quad \text { Required length } & =\sqrt{a^{2}+b^{2}+c^{2}} \\ & =\sqrt{100+169+64}=\sqrt{333} \end{aligned} $

48. If the distance between the points $(a, 2,1)$ and $(1,-1,1)$ is 5 , then $a$ ……

Show Answer

Solution

Given points are $(a, 2,1)$ and $(1,-1,1)$.

$ \begin{matrix} \therefore & \sqrt{(a-1)^{2}+(2+1)^{2}+(1-1)^{2}} & =5 \\ \Rightarrow & (a-1)^{2}+9+0 & =25 \\ \Rightarrow & a^{2}-2 a+1+9 & =25 \\ \Rightarrow & a^{2}-2 a-15 & =0 \\ \Rightarrow & a^{2}-5 a+3 a-15 & =0 \\ \Rightarrow & a(a-5)+3(a-5) & =0 \\ \Rightarrow & (a-5)(a+3) & =0 \\ \Rightarrow & a-5=0 \text { or } a+3 & =0 \\ \therefore & a & =+5 \text { or }-3 \end{matrix} $

49. If the mid-points of the sides of a triangle $A B, B C$ and $C A$ are $D(1,2,-3)$, $E(3,0,1)$ and $F(-1,1,-4)$, then the centroid of the $\triangle A B C$ is ……

Show Answer

Solution

Let the vertices of $\triangle A B C$ is $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$.

Since, $D$ is the mid-point of $A B$, then

$ \begin{aligned} & \frac{x_1+x_2}{2}=1 \Rightarrow x_1+x_2=2 \\ & \frac{y_1+y_2}{2}=2 \Rightarrow y_1+y_2=4 \\ & \frac{z_1+z_2}{2}=-3 \Rightarrow z_1+z_2=-6 \end{aligned} $

Similarly, $E$ and $F$ are the mid-points of sides $B C$ and $A C$, respectively.

$ \begin{aligned} & \frac{x_2+x_3}{2}=3 \Rightarrow x_2+x_3=6 \\ & \frac{y_2+y_3}{2}=0 \Rightarrow y_2+y_3=0 \\ & \frac{z_2+z_3}{2}=1 \Rightarrow z_2+z_3=2 \\ & \frac{x_1+x_3}{2}=-1 \Rightarrow x_1+x_3=-2 \\ & \frac{y_1+y_3}{2}=1 \Rightarrow y_1+y_3=2 \\ & \frac{z_1+z_3}{2}=-4 \Rightarrow z_1+z_3=-8 \end{aligned} $

From Eqs. (i) and (iv),

$ x_1+2 x_2+x_3=8 $

From Eqs. (ii) and (v),

From Eqs. (iii) and (vi),

$ y_1+2 y_2+y_3=4 $

From Eqs. (vii) and (x),

$ z_1+2 z_2+z_3=-4 $

$\Rightarrow$

$ 2 x_2=10 \Rightarrow x_2=5 $

If $x_3=1$, then $x_1=-3$

$x_2=5$, then $x_3=1$

$\because$ From Eqs. (viii) and (xi),

If

$ x_1=-3, x_2=5, x_3=1 $

$ \begin{aligned} 2 y_2 & =2 \Rightarrow y_2=1 \\ y_2 & =1, \text { then } y_3=-1 \\ y_3 & =-1, \text { then } y_1=3 \\ y_1 & =3, y_2=1, y_3=-1 \end{aligned} $

From Eqs. (ix) and (xii),

$ \begin{aligned} 2 z_2 & =4 \Rightarrow z_2=2 \\ z_2 & =2, \text { then } z_3=0 \\ z_3 & =0, \text { then } z_1=-8 \\ z_1 & =-8, z_2=2, z_3=0 \end{aligned} $

So, the vertices of $\triangle A B C$ are $A(-3,3,-8), B(5,1,2)$ and $C(1,-1,0)$. Hence, coordinates of centroid of $\triangle A B C, G \frac{-3+5+1}{3}, \frac{3+1-1}{3}, \frac{-8+2+0}{3}$

i.e.,

$G(1,1,-2)$.

50. Match each item given under the Column I to its correct answer given under Column II.

Column I Column II
(i) In-XY-plane (a) Ist octant
(ii) Point $(2,3,4)$ lies in the (b) YZ-plane
(iii) Locus of the points having $X$ coordinate
0 is
(c) $z$-coordinate is zero
(iv) A line is parallel to $X$-axis if and only (d) Z-axis
$(v)$ If $X=0, y=0$ taken together will
represent the
(e) plane parallel to $X Y$-plane
(vi) $z=c$ represent the plane (f) if all the points on the line have
equal $y$ and $z$-coordinates
(vii) Planes $X=a, Y=b$ represent the line (f) from the point on the respective
(viii) Coordinates of a point are the distances
from the origin to the feet of
perpendiculars
(h) parallel to Z-axis
(ix) A ball is the solid region in the space
enclosed by a
(i) disc
$(x)$ Region in the plane enclosed by a circle
is known as a
(j) sphere
Show Answer

Solution

(i) In XY-plane, z-coordinates is zero.

(ii) The point $(2,3,4)$ lies in 1 st octant .

(iii) Locus of the points having $x$-coordinate is zero is $Y Z$-plane.

(iv) $A$ line is parallel to $X$-axis if and only if all the points on the line have equal $y$ and $z$-coordinates.

(v) $x=0, y=0$ represent Z-axis.

(vi) $z=c$ represent the plane parallel to $X Y$-plane.

(vii) The planes $x=a, y=b$ represent the line parallel to $Z$-axis.

(viii) Coordinates of a point are the distances from the origin to the feet of perpendicular from the point on the respective.

(ix) A ball is the solid region in the space enclosed by a sphere.

(x) The region in the plane enclosed by a circle is known as a disc.



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane