Complex Numbers and Quadratic Equations

Short Answer Type Questions

1. For a positive integer n, find the value of (1i)n(11in).

Show Answer

Solution

Given expression =(1i)n(11in)

=(1i)n(i1)nin=(1i)n(1i)n(1)nin=[(1i)2]n(1)nin=(1+i22i)n(1)nin[i2=1]=(112i)n(1)nin=(2)nin(1)nin=(1)2n2n=2n

2. Evaluate n=113(in+in+1), where nN.

Thinking Process

 Use i2=1,i4=(1)2=1,i3=i, and i5=i to Solve it 

Show Answer

Solution

Given that, n=113(in+in+1),nN

=(i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13)+(i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13+i14)=(i+2i2+2i3+2i4+2i5+2i6+2i7+2i8+2i9+2i10+2i11+2i12+2i13+i14)=i22i+2+2i+2(i4)i2+2(i)4i3+2(i2)4+2(i2)4i+2(i2)5+2(i2)5i+2(i2)6+2(i2)6i+(i2)7=i22i+2+2i22i+2+2i22i+2+2i11+i

Alternate Method

n=113(in+in+1),nN=n=113in(1+i)=(1+i)[i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13]=(1+i)[i13][in+in+1+in+2+in+3=0, where nN i.e., n=112in=0.=(1+i)i[(i4)3.i=1]=(i2+i)=i1

3. If (1+i1i)3(1i1+i)3=x+iy, then find (x,y).

Thinking Process

If two complex numbers z1=x1+iy1 and z2=x2 +iy are equal

 i.e., z1=z2x1+iy1=x2+iy2, then x1=x2 and y1=y2

Show Answer

Solution

Given that, (1+i1i)3(1i1+i)3=x+iy

(1+i1i)3=1+i3+3i(1+i)1i33i(1i)=1i+3i+3i21+i3i+3i2=2i22i2=i1i1=1i1+i=(1i)(1+i)(1i)(1i)=1+i22i1+1=112i2

(1+i1i)3=i

Similarly, (1i1+i)3=1i=i2i=i

Using Eqs. (ii) and (iii) in Eq. (i), we get

ii=x+iy2i=x+iy

On comparing real and imaginary part of complex number, we get

x=0 and y=2

So, (x,y)=(0,2)

4. If (1+i)22i=x+iy, then find the value of x+y.

Show Answer

Solution

Given that,

(1+i)22i=x+iy

(1+i2+2i)2i=x+iy2i2i=x+iy2i(2+i)(2i)(2+i)=x+iy4i+2i24i2=x+iy

4i24+1=x+iy25+4i5=x+iy

On comparing both sides, we get

x=2/5y=4/5

x+y=25+45=2/5

5. If (1i1+i)100=a+ib, then find (a,b).

Show Answer

Solution

Given that, (1i1+i)100=a+ib

[(1i)(1+i)(1i)(1i)]100=a+ib(1+i22i1i2)100=a+ib(2i2)100=a+ib[i2=1](i4)25=a+ib1=a+ib Then, a=1 and b=0[i4=1](a,b)=(1,0)

6. If a=cosθ+isinθ, then find the value of 1+a1a.

Thinking Process

To solve the above problem use the trigonometric formula cosθ=2cos2θ/2

1=12sin2θ/2 and sinθ=2sinθ/2cosθ/2.

Show Answer

Solution

Given that, a=cosθ+isinθ

1+a1a=1+cosθ+isinθ1cosθisinθ=1+2cos2θ/21+2isinθ/2cosθ/211+2sin2θ/22isinθ/2cosθ/2=2cosθ/2(cosθ/2+isinθ/2)2sinθ/2(sinθ/2icosθ/2)=2cosθ/2(cosθ/2+isinθ/2)2isinθ/2(cosθ/2+isinθ/2)=1icotθ/2=+i2icotθ/2=icotθ/2[1i=i2i]

7. If (1+i)z=(1i)z¯, then show that z=iz¯.

Show Answer

Solution

We have,

(1+i)z=(1i)z¯zz¯=(1i)(1+i)

zz¯=(1i)(1+i)(1i)(1i)zz¯=1+i22i1i2[i2=1]zz¯=112i2zz¯=i

z=iz¯

Hence proved.

8. If z=x+iy, then show that zz¯+2(z+z¯)+b=0, where bR, represents a circle.

Show Answer

Solution

Given that, z=x+iy

Then, z¯=xiy

Now, zz¯+2(z+z¯)+b=0

(x+iy)(xiy)+2(x+iy+xiy)+b=0

x2+y2+4x+b=0, which is the equation of a circle.

9. If the real part of z¯+2z¯1 is 4 , then show that the locus of the point representing z in the complex plane is a circle.

Show Answer

Solution

Let z=x+iyNow, z¯+2z¯1=xiy+2xiy1=[(x+2)iy][(x1)+iy][(x1)iy][(x1)+iy]=(x1)(x+2)iy(x1)+iy(x+2)+y2(x1)2+y2=(x1)(x+2)+y2+i[(x+2)y(x1)y](x1)2+y2[i2=1]

Taking real part, (x1)(x+2)+y2(x1)2+y2=4

x2x+2x2+y2=4(x22x+1+y2)

3x2+3y29x+6=0, which represents a circle.

Hence, z lies on the circle.

10. Show that the complex number z, satisfying the condition arg (z1z+1)=π4 lies on a circle.

Thinking Process

First use, arg(z1z2)=arg(z1)arg(z2). Also apply arg(z)=θ=tan1yx, where z=x+iy

and then use the property tan1xtan1y=tan1(xy1+xy)

Show Answer

Solution

Let z=x+iy

Given that, arg(z1z+1)=π/4

arg(z1)arg(z+1)=π/4arg(x+iy1)arg(x+iy+1)=π/4arg(x1+iy)arg(x+1+iy)=π/4

tan1yx1tan1yx+1=π/4tan1[yx1yx+11+(yx1)(yx+1)]=π/4y[x+1x+1x21]x21+y2x21=tanπ/42yx2+y21=1x2+y21=2yx2+y22y1=0, which represents a circle. 

11. solve the equation |z|=z+1+2i.

Show Answer

Solution

The given equation is |z|=z+1+2i …(i)

Let z=x+iy

From Eq. (i), |x+iy|=x+iy+1+2i

x2+y2=x+iy+1+2i[|z|+x2=y2]x2+y2=(x+1)+i(y+2)

On squaring both sides, we get

x2+y2=(x+1)2+i2(y+2)2+2i(x+1)(y+2)

x2+y2=x2+2x+1y24y4+2i(x+1)(y+2)

On comparing real and imaginary parts,

x2+y2=x2+2x+1y24y4

i.e., 2y2=2x4y3 …(ii)

and 2(x+1)(y+2)=0

(x+1)=0 or (y+2)=0

x=1, or y=2

For x=1,2y2=24y3

2y2+4y+5=0 [using Eq. (ii)]

y=4±162×4×54

y=4±244R

For y=2,2(2)2=2x4(2)3 [using Eq. (ii)]

8=2x+83

2x=3x=3/2

z=x+iy=3/22i

Long Answer Type Questions

12. If |z+1|=z+2(1+i), then find the value of z.

Show Answer

Solution

Given that,

|z+1|=z+2(1+i)…(i)z=x+iy

Then,

|x+iy+1|=x+iy+2(1+i)

|x+1+iy|=(x+2)+i(y+2)(x+1)2+y2=(x+2)+i(y+2)

On squaring both sides, we get

(x+1)2+y2=(x+2)2+i2(y+2)2+2i(x+2)(y+2)x2+2x+1+y2=x2+4x+4y24y4+2i(x+2)(y+2)x2+y2+2x+1=x2y2+4x4y+2i(x+2)(y+2)

On comparing real and imaginary parts, we get

x2+y2+2x+1=x2y2+4x4y …(ii)

2y22x+4y+1=0…(ii)

 and 2(x+2)(y+2)=0x+2=0 or y+2=0x=2 or y=2…(iii)

For x=2,2y2+4+4y+1=0 [using Eq. (ii)]

2y2+4y+5=0

164×2×5<0

Discriminant, D=b24ac<0

2y2+4y+5 has no real roots.

For y=2,2(2)22x+4(2)+1=0 [using Eq. (ii)]

82x8+1=0

x=1/2

z=x+iy=122i

13. If arg(z1)=arg(z+3i), then find x1:y, where z=x+iy.

Show Answer

Solution

Given that, arg(z1)=arg(z+3i)

and  let z=x+iyNow arg(z1)=arg(z+3i)arg(x+iy1)=arg(x+iy+3i)arg(x1+iy)=arg[x+i(y+3)]tan1yx1=tan1y+3x

yx1=y+3xxy=(x1)(y+3)xy=xyy+3x33x3=y

3(x1)y=1x1y=13(x1):y=1:3

14. Show that |z2z3|=2 represents a circle. Find its centre and radius.

Thinking Process

If z1=x1+iy1 and z2=x2+iy2 are two complex numbers, then |z1z2|=|z1z2|,(z20), use this concept to solve the above problem. Also, we know that general equation of a circle is x2+y2+2gx+2fy+c=0, with centre (g,f) and radius =g2+f2c.

Show Answer

Solution

Let z=x+iy

Given, equation is |z2z3|=2|z2z3|=2

|x+iy2x+iy3|=2

|x2+iy|=2x3+iy

(x2)2+y2=2(x3)2+y2[|x+iy|=x2+y2]

On squaring both sides, we get

x24x+4+y2=4(x26x+9+y2)3x2+3y220x+32=0x2+y2203x+323=0

On comparing the above equation with x2+y2+2gx+2fy+c=0, we get

2g=203g=103 and 2f=0f=0 and c=323 Centre =(g,f)=(10/3,0) Also,  radius (r)=(10/3)2+032/3[r=g2+f2c]=13(10096)=2/3

15. If z1z+1 is a purely imaginary number (z1), then find the value of |z|.

Thinking Process

If z=x +iy is a purely imaginary number, then its real part must be equal to zero i.e., x=0,

Show Answer

Solution

Let

z=x+iyz1z+1=x+iy1x+iy+1,z1=x1+iyx+1+iy=(x1+iy)(x+1iy)(x+1+iy)(x+1iy)

=(x21)+iy(x+1)iy(x1)i2y2(x+1)2(iy)2z1z+1=(x21)+y2+i[y(x+1)y(x1)](x+1)2+y2

Given that, z1z+1 is a purely imaginary numbers.

Then, (x21)+y2(x+1)2+y2=0

x21+y2=0x2+y2=1x2+y2=1|z|=1[|z|=x2+y2]

16. z1 and z2 are two complex numbers such that |z1|=|z2| and arg(z1)+arg(z2)=π, then show that z1=z¯2.

Show Answer

Solution

Let z1=r1(cosθ1+isinθ1) and z2=r2(cosθ2+isinθ2) are two complex numbers.

Given that, |z1|=|z2|and arg(z1)+arg(z2)=πIf |z1|=|z2|r1=r2and if arg(z1)+arg(z2)=πθ1+θ2=πθ1=πθ2

Now z1=r1(cosθ1+isinθ1)

z1=r2(cos(πθ2)+isin(πθ2)][r1=r2 and θ1=(πθ2)]z1=r2(cosθ2+isinθ2)z1=r2(cosθ2isinθ2)z1=[r2(cosθ2isinθ2)][z¯2=r2(cosθ2isinθ2)]z1=z¯2

17. If |z1|=1(z11) and z2=z11z1+1, then show that the real part of z2 is zero.

Show Answer

Solution

Let

z1=x+iy|z1|=x2+y2=1[because|z1|=1,given]…(i)Now, z2=z11z1+1=x+iy1x+iy+1=x1+iyx+1+iy=(x1+iy)(x+1iy)(x+1+iy)(x+1iy)=x21+iy(x+1)iy(x1)i2y2(x+1)2i2y2=x21+ixy+iyixy+iy+y2(x+1)2+y2

=x2+y21+2iy(x+1)2+y2=11+2iy(x+1)2+y2[x2+y2=1]=0+2yi(x+1)2+y2

Hence, the real part of z2 is zero.

18. If z1,z2 and z3,z4 are two pairs of conjugate complex numbers, then find arg(z1z4)+arg(z2z3).

Thinking Process

First let, z=r(cosθ+isinθ), then conjugate of z i.e., z¯=r(cosθisinθ). Use the property arg(z1z2)=arg(z1)arg(z2)

Show Answer

Solution

Let z1=r1(cosθ1+isinθ1),

Then, z2=z¯1=r1(cosθ1isinθ1)=r1[cos(θ1)+sin(θ1)]

Also, let z3=r2(cosθ2+isinθ2),

Then, z4=z¯3=r2(cosθ2isinθ2)

argz1z4+argz2z3=arg(z1)arg(z4)+arg(z2)arg(z3)=θ1(θ2)+(θ1)θ2[arg(z)=θ]=θ1+θ2θ1θ2=0

19. If |z1|=|z2|==|zn|=1, then show that

|z1+z2+z3++zn|=|1z1+1z2+1z3++1zn|.

Show Answer

Solution

Given that,

|z1|=|z2|==|zn|=1

|z1|2=|z2|2==|zn|2=1

z1z¯1=z2z¯2=z3z¯3==znz¯n=1

z1=1z¯1,z2=1z¯2==zn=1zn

Now, |z1+z2+z3+z4++zn|

=|z1z¯1z¯1+z2z¯2z¯2+z3z¯3z¯3++znz¯nz¯n|z1z¯=1, where z1=1z,z1=z¯z¯z¯,z1=z¯=||z1|2z¯1+|z2|2z¯2+|z3|2z3++|zn|2z¯n|=|1z¯1+1z¯2+1z¯3++1z¯n|=1z¯1+1z¯2+1z¯3

=|1z1+1z2++1zn|

Hence, proved.

20. If the complex numbers z1 and z2, arg(z1)arg(z2)=0, then show that |z1z2|=|z1||z2|.

Show Answer

Solution

Let z1=r1(cosθ1+isinθ1)

and z2=r2(cosθ2+isinθ2)

arg(z1)=θ1 and arg(z2)=θ2

Given that, arg(z1)arg(z2)=0

θ1θ2=0θ1=θ2

z2=r2(cosθ1+isinθ1)

z1z2=(r1cosθ1r2cosθ1)+i(r1sinθ1r2sinθ1)

|z1z2|=(r1cosθ1r2cosθ1)2+(r1sinθ1r2sinθ1)2=r12+r222r1r2cos2θ12r1r2sin2θ1=r12+r222r1r2(sin2θ1+cos2θ1)=r12+r222r1r2=(r1r2)2

|z1z2|=r1r2=|z1||z2|

21. solve the system of equations Re(z2)=0,|z|=2.

Show Answer

Solution

Given that, Re(z2)=0,|z|=2

Let z=x+iy

x2+y2=2x2+y2=4…(i)

and Re(z)=x

Also, z=x+iy

z2=x2+2ixyy2

z2=(x2y2)+2ixy

Re(z2)=x2y2 [Re(z2)=0]

x2y2=0 …(ii)

From Eqs. (i) and (ii),

x2+x2=4

2x2=4x2=2

x=±2

y=±2

z=x+iy

z=2±i2,2±i2

22. Find the complex number satisfying the equation z+2|(z+1)|+i=0.

Show Answer

Solution

Given equation is z+2|(z+1)|+i=0

Let z=x+iy

x+iy+2|x+iy+1|+i=0

x+i(1+y)+2(x+1)2+y2=0

x+i(1+y)+2(x2+2x+1+y2)=0

x+2x2+2x+1+y2=0

x2=2(x2+2x+1+y2

x2+4x+2y2+2=0 …(ii)

1+y=0

y=1

For y=1,x2+4x+2+2=0 [using Eq. (ii)]

x2+4x+4=0(x+2)2=0

x+2=0x=2

z=x+iy=2i

23. Write the complex number z=1icosπ3+isinπ3 in polar form.

Show Answer

Solution

Given that, z=1icosπ3+isinπ3=2[12+i12]cosπ3+isinπ3

=2[cos(ππ/4)+isin(ππ/4)]cosπ/3+isinπ/3

=2[cos3π/4+isin3π/4]cosπ/3+isinπ/3

=2[cos(3π4π3)+isin(3π4π3)]

=2[cos5π12+isin5π12]

24. If z and w are two complex numbers such that |zw|=1 and arg(z)arg(w)=π2, then show that z¯w=i.

Show Answer

Solution

Let z=r1(cosθ1+isinθ1) and w=r2(cosθ2+isinθ2)

Also, |zw|=|z||w|=r1r2=1

r1r2=1

Further, arg(z)=θ1 and arg(w)=θ2

 But arg(z)arg(w)=π2θ1θ2=π2arg(zw)=π2 Now,  to prove z¯w=i LHS =z¯w=r1(cosθ1isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ2θ1)+isin(θ2θ1)]=r1r2[cos(π/2)+isin(π/2)]=1[0i]=i=RHS

Hence proved.

Fillers

25. Fill in the blanks of the following.

(i) For any two complex numbers z1,z2 and any real numbers a,b, |az1bz2|2+|bz1+az2|2= ……

(ii) The value of 25×9 is ……

(iii) The number (1i)31i3 is equal to ……

(iv) The sum of the series i+i2+i3+ …… upto 1000 terms is ……

(v) Multiplicative inverse of 1+i is ……

(vi) If z1 and z2 are complex numbers such that z1+z2 is a real number, then z1= ……

(vii) arg(z)+argz¯ where, (z¯0) is ……

(viii) If |z+4|3, then the greatest and least values of |z+1| are …… and ……

(ix) If |z2z+2|=π6, then the locus of z is ……

(x) If |z|=4 and arg(z)=5π6, then z= ……

Show Answer

Solution

(i) |az1bz2|2+|bz1+az2|2

=|az1|2+|bz2|22Re(az1bz¯2)+|bz1|2+|az2|2+2Re(az1bz¯2)=(a2+b2)|z1|2+(a2+b2)|z2|2=(a2+b2)(|z1|2+|z2|2)

(ii) 25×9=i25×i9=i2(5×3)=15

(iii) (1i)31i3=(1i)3(1i)(1+i+i2)

=(1i)2i=1+i22ii=2ii=2

(iv) i+i2+i3+ upto 1000 terms =i+i2+i3+i4+i1000=0

[in+in+1+in+2+in+3=0, where nNi.e.,n=11000in=0]

(v) Multiplicative inverse of 1+i=11+i=1i1i2=12(1i)

(vi) Let z1=x1+iy1 and z2=x2+iy2

z1+z2=(x1+x2)+i(y1+y2), which is real.

If z1+z2 is real, then y1+y2=0

y1=y2

z2=x2iy1

z2=z¯1 [when x1=x2 ]

(vii) arg(z)+arg(z¯),(z¯0)

θ+(θ)=0

(viii) Given that, |z+4|3

For the greatest value of |z+1|.

|z+1|=|z+43||z+4|+|3|=|z+43|3+3=|z+43|6

So, greatest value of |z+1|=6

For, now, least value of |z+1|, we know that the least value of the modulus of a complex number is zero. So, the least value of |z+1| is zero.

(ix) Given that,

|z2z+2|=π6

|x+iy2||x+iy+2|=π6|x2+iy||x+2+iy|=π66|x2+iy|=π|x+2+iy|6(x2)2+y2=π(x+2)2+y236[x2+44x+y2]=π2[x2+4x+4+y2](36π2)x2+(36π2)y2(144+4π2)x+144+4π2=0, which is a circle. 

(x) Given that, |z|=4 and arg(z)=5π6

 Let z=x+iy=r(cosθ+isinθ)|z|=r=4 and arg(z)=θtanθ=5π6z=4(cosπ6+isinπ6)=4[cos(ππ/6)+isin(ππ/6)]=4[cosπ6+isinπ6]=4[32+i12]=23+2i

True/False

26. State true or false for the following.

(i) The order relation is defined on the set of complex numbers.

(ii) Multiplication of a non-zero complex number by arrow rotates the point about origin through a right angle in the anti-clockwise direction.

(iii) For any complex number z, the minimum value of |z|+|z1| is 1 .

(iv) The locus represented by |z1|=|zi| is a line perpendicular to the join of the points (1,0) and (0,1).

(v) If z is a complex number such that z0 and Re(z)=0, then, Im(z2)=0.

(vi) The inequality |z4|<|z2| represents the region given by x>3.

(vii) Let z1 and z2 be two complex numbers such that |z1+z2|=|z1|+|z2|, then arg(z1z2)=0.

(viii) 2 is not a complex number.

Show Answer

Solution

(i) False

We can compare two complex numbers when they are purely real. Otherwise comparison of complex number is not possible.

(ii) False

(x,y)[10]=[0y], which is false. 

(iii) True

 Let z=x+iy|z|+|z1|=x2+y2+(x1)2+y2

If x=0,y=0, then the value of |z|+|z1|=1.

(iv) True

Let z=x+iy|z1|=|zi|Then, |x1+iy|=|xi(1y)|(x1)2+y2=x2+(1y)2x22x+1+y2=x2+1+y22y2x+1=12y2x+2y=0xy=0…(i)

Equation of a line through the points (1,0) and (0,1),

y0=1001(x1)y=(x1)x+y=1…(ii)

which is perpendicular to the line xy=0.

(v) False

Let z=x+iy,z0 and Re(z)=0

i.e., x=0

z=iy

Im(z2)=i2y2=y2 which is real.

(vi) True

Given inequality, |z4|<|z2|

Let z=x+iy

|x4+iy|<|x2+iy|(x4)2+y2<(x2)2+y2

(x4)2+y2<(x2)2+y2

x28x+16+y2<x24x+4+y2

8x+16<4x+4

8x<4x12

4x<12

4x>12

x>3

(vii) False

Let z1=x1+iy1 and z2=x2+iy2Given that, |z1+z2|=|z1|+|z2|

|x1+iy1+x2+iy2|=|x1+iy1|+|x2+iy2|(x1+x2)2+(y1+y2)2=(x12+y12)+(x22+y22)

On squaring both sides, we get

(x1+x2)2+(y1+y2)2=(x12+y12)+(x22+y22)+2(x12+y12)(x22+y22)x12+x22+2x1x2+y12+y22+2y1y2=x12+y12+x22+y22+2(x12+y12)(x22+y22)2x1x2+2y1y2=2(x12+y12)(x22+y22)x1x2+y1y2=(x12+y12)(x22+y22)

On squaring both sides, we get

x12x22+y12y22+2x1x2y1y2=x12x22+y12x22+x12y22+y12y22

(x1y2x2y1)2=0

x1y2=x2y1

y1x1=y2x2

(y1x1)(y2x2)=0

arg(z1)arg(z2)=0

(viii) True

We know that, 2 is a real number.

Since, 2 is not a complex number.

27. Match the statements of Column A and Column B.

Column A Column B
(i) The polar form of i+3 is (a) Perpendicular bisector of segment
joining (2,0) and (2,0).
(ii) The amplitude of 1+3 is (b) On or outside the circle having
centre at (0,4) and radius 3 .
(iii) It |z+2|=|z2|, then locus of z is (c) 2π3
(iv) It |z+2i|=|z2i|, then locus of z is (d) Perpendiculor bisectar of segment
joining (0,2) and (0,2).
(v) Region represented by (e) 2(cosπ6+isinπ6)
(vi) Region represented by |z+4|3 is (f) On or inside the circle having centre
(4,0) and radius 3 units.
(vii) Conjugate of 1+2i1i lies in (g) First quadrant
(viii) Reciprocal of 1i lies in (h) Third quadrant
Show Answer

Solution

(i) Given, z=i+3=r(cosθ+sinθ)rcosθ=3,rsinθ=1r2=1+3=4r=2[r>0]tanα=|rsinθrcosθ|=13tanα=13α=π6x>0,y>0and arg(z)=θ=π6

So the polar form of z is 2(cosπ6+isinπ6).

(ii) Given that, z=1+3=1+i3

tanα=|31|=3

tanα=tanπ3α=π3

x<0,y>0θ=πα=ππ3=2π3

(iii) Given that, |z+2|=|z2|

|x+2+iy|=|x2+iy|(x+2)2+y2=(x2)2+y2x2+4x+4=x24x+48x=0x=0

It is a straight line which is a perpendicular bisector of segment joining the points (2,0) and (2,0)

(iv) Given that, |z+2i|=|z2i|

|x+i(y+2)|=|x+i(y2)|x2+(y+2)2=x2+(y2)24y=0y=0

It is a straight line, which is a perpendicular bisector of segment joining (0,2) and (0,2).

(v) Given that, |z+4i|3=|x+iy+4i|3

=|x+i(y+4)|3=x2+(y+4)23=x2+(y+4)29=x2+y2+8y+169=x2+y2+8y+70

Which represent a circle. On or outside having centre (0,4) and radius 3 .

(vi) Given that, |z+4|3

|x+iy+4|3|x+4+iy|3(x+4)2+y23(x+4)2+y29x2+8x+16+y29x2+8x+y2+70

It represent the region which is on or inside the circle having the centre (4,0) and radius 3.

(vii) Given that,

z=1+2i1i=(1+2i)(1+i)(1i)(1+i)=1+2i+i+2i21i2=12+3i1+1=1+3i2

z¯=123i2

Hence, (12,32) lies in third quadrant.

(viii) Given that, z=1i

1z=11i=1+i(1i)(1+i)=1+i1i2=12(1+i)

Hence, (12,12) lies in first quadrant. Hence, the correct matches are

(a) (v),

(b) (iii),

(c) (i),

(d) (iv),

(e) (ii),

(f) (vi),

(g) (viii),

(h) (vii)

28. What is the conjugate of 2i(12i)2 ?

Show Answer

Solution

Given that, z=2i(12i)2=2i1+4i24i=2i144i=2i34i=(2i)(3+4i)=[(2i)(34i)(3+4i)(34i)]=(68i3i+4i29+16)=(11i+2)25=125(211i)z=125(2+11i)z¯=125(211i)=2251125i

29. If |z1|=|z2|, is it necessary that z1=z2.

Show Answer

Solution

Given that, |z1|=|z2|Let z1=x1+iy1 and z2=x2+iy2|x1+iy1|=|x2+iy2|

x12+y12=x22+y22x12=x22,y12=y22x1=±x2,y1=±y2z1=x1+iy1 or z1=±x2±iy2

Hence, it is not neccessary that z1=z2.

30. If (a2+1)22ai=x+iy, then what is the value of x2+y2 ?

Show Answer

Solution

Given that, (a2+1)22ai=x+iy(a2+1)2(2ai)=x+iy

(a2+1)2(2a+i)(2ai)(2a+i)=x+iy(a2+1)2(2a+i)4a2+1=x+iyx=2a(a2+1)24a2+1 and y=(a2+1)24a2+1x2+y2=4a2[(a2+1)24a2+1]+[(a2+1)24a2+1]=(4a2+1)(a2+1)4(4a2+1)2=(a2+1)4(4a2+1)

31. Find the value of z, if |z|=4 and arg(z)=5π6.

Show Answer

Solution

Let z=r(cosθ+isinθ)

 Also, |z|=r=4 and θ=5π6[arg(z)=θ]z=4[cos5π6+isin5π6][z=r(cosθ+isinθ)]=4[cos(ππ6)+isin(ππ6)]=4[cosπ6+isinπ6]=4[32+i12]=23+2i

32. Find the value of |(1+i)(2+i)(3+i)|.

Thinking Process

First, convert the given expression in the formed a+ib, then use |a+ib|=a2+b2.

Show Answer

Solution

Given that, |(1+i)(2+i)(3+i)|=|(2+i+2i+i2)(3+i)|=|2+3i13+i|

=|1+3i3+i|=|(1+3i)(3i)(3+i)(3i)|=|3+9ii3i29i2|=|3+8i+39+1|=|6+8i10|=62100+82100=36+64100=100100=1

33. Find the principal argument of (1+i3)2.

Thinking Process

Let z=a+ib, then the polar form of z is r(cosθ+isinθ), where r=|z|=a2+b2 and tanθ=ba Here, θ is argument or amplitude of z i.e., arg(z)=θ. The principal argument is a unique value of θ such that πθπ.

Show Answer

Solution

Given that,

z=(1+i3)2z=13+2i3z=2+i23

tanα=|232|=|3|=3[tanα=|Im(z)Re(z)|]tanα=tanπ3α=π3Re(z)<0 and Im(z)>0arg(z)=ππ3⇒=2π3

34. Where does z lie, if |z5iz+5i|=1 ?

Thinking Process

 If z1=x1 tiy and z2=x2+iy2, then |z1|=x12+y12 and |z2|=x22+y22. Also, use the modulus property i.e., |z1z2|=|z1||z2|

Show Answer

Solution

Let z=x+iy

Given that, |z5iz+5i|=|x+iyi5||x+iy+i5|

|z5iz+5i|=|x+i(y5)||x+i(y+5)|[|z5iz+5i|=1]

|z5iz+5i|=x2+(y5)2x2+(y+5)2

On squaring both sides, we get

x2+(y5)2=x2+(y+5)2

10y=+10y20y=0y=0

So, z lies on real axis.

Objective Type Questions

35. sinx+icos2x and cosxisin2x are conjugate to each other for

(a) x=nπ

(b) x=n+12π2

(c) x=0

(d) No value of x

Show Answer

Solution

(d) Let z=sinx+icos2x

and z¯=sinxicos2x

Given that, z¯=cosxisin2x

sinxicos2x=cosxisin2x

sinx=cosx and cos2x=sin2x

tanx=1 and tan2x=1

tanx=tanπ4 and tan2x=tanπ4

x=nπ+π4 and 2x=nπ+π4

2xx=0x=0

36. The real value of α for which the expression 1isinα1+2isinα is purely real is

(a) (n+1)π2

(b) (2n+1)π2

(c) nπ

(d) None of these

where, nN

Thinking Process

First, convert the given expansion into a +ibform and then check whether the complex number a +ib is purely real.

Show Answer

Solution

(c) Given expression, z=1isinα1+2isinα

=(1isinα)(12isinα)(1+2isinα)(12isinα)=1isinα2isinα+2i2sin2α14i2sin2α=13isinα2sin2α1+4sin2α=12sin2α1+4sin2α3isinα1+4sin2α

It is given that z is a purely real.

3sinα1+4sin2α=03sinα=0sinα=0α=nπ

37. If z=x +iy lies in the third quadrant, then z¯z also lies in the third quadrant, if

(a) x>y>0

(b) x<y<0

(c) y<x<0

(d) y>x>0

Show Answer

Solution

(b) Given that, z=x+iy lies in third quadrant.

x<0 and y<0

Now, z¯z=xiyx+iy=(xiy)(xiy)(x+iy)(xiy)=x2y22ixyx2+y2

z¯z=x2y2x2+y22ixyx2+y2

Since, z¯z also lies in third quadrant.

x2y2x2+y2<0 and 2xyx2+y2<0x2y2<0 and 2xy<0x2<y2 and xy>0 So, x<y<0

38. The value of (z+3)(z¯+3) is equivalent to

(a) |z+3|2

(b) |z3|

(c) z2+3

(d) None of these

Show Answer

Solution

(a) Given that, (z+3)(z¯+3)

Let z=x+iy

(z+3)(z¯+3)=(x+iy+3)(x+3iy)

=(x+3)2(iy)2=(x+3)2+y2

=|x+3+iy|2=|z+3|2

39. If (1+i1i)x=1, then

(a) x=2n+1

(b) x=4n

(c) x=2n

(d) x=4n+1

where, nN

Show Answer

Solution

(b) Given that, (1+i1i)x=1

[(1+i)(1+i)(1i)(1+i)]x=1[1+2i+i21i2]x=1[2i1+1]x=1[2i2]x=1ix=1ix=(i4n)x=4n

40. A real value of x satisfies the equation (34ix3+4ix)=αiβ(α,βR), if α2+β2 is equal to

(a) 1

(b) -1

(c) 2

(d) -2

Show Answer

Solution

(a) Given equation, (34ix3+4ix)=αiβ(α,βR)

[34ix3+4ix]=αiβ Now, (αiβ)=(34ix)(34ix)(3+4ix)(34ix)=9+16i2x224ix916i2x2αiβ=916x224ix9+16x2αiβ=916x29+16x2i24x9+16x2…(i)α+iβ=916x29+16x2+i24x9+16x2…(ii)

 So, (αiβ)(α+iβ)=(916x29+16x2)(i24x9+16x2)2α2+β2=81+256x4288x2+576x2(9+16x2)2=81+256x4+288x2(9+16x2)2=(9+16x2)2(9+16x2)2=1

41. Which of the following is correct for any two complex numbers z1 and z2 ?

(a) |z1z2|=|z1||z2|

(b) arg(z1z2)=arg(z1)arg(z2)

(c) |z1+z2|=|z1|+|z2|

(d) |z1+z2||z1||z2|

Show Answer

Solution

(a) Let z1=r1(cosθ1+isinθ1)

|z1|=r1

and z2=r2(cosθ2+isinθ2)

|z2|=r2

Now, z1z2=r1r2[cosθ1cosθ2+isinθ1cosθ2+icosθ1sinθ2+i2sinθ1sinθ2] =r1r2[cos(θ1+θ2)+isin(θ1+θ2)]

|z1z2|=r1r2

|z1z2|=|z1||z2| [using Eqs. (i) and (ii)]

42. The point represented by the complex number (2i) is rotated about origin through an angle π2 in the clockwise direction, the new position of point is

(a) 1+2i

(b) 12i

(c) 2+i

(d) 1+2i

Thinking Process

Here, z<α is a complex number, where modulus is r and argument (θ+α). If P(z) rotates in clockwise sense through an angle α, then its new position will be z(θiα).

Show Answer

Solution

(b) Given that, z=2i

It is rotated about origin through an angle π2 in the clockwise direction

New position =zeiπ/2=(2i)eiπ/2

=(2i)[cos(π2)+isin(π2)]=(2i)[0i]=2i1=12i

43. If x,yR, then x+iy is a non-real complex number, if

(a) x=0

(b) y=0

(c) x0

(d) y0

Show Answer

Solution

(d) Given that, x,yR

Then, x+iy is non-real complex number if and only if y0.

44. If a+ib=c+id, then

(a) a2+c2=0

(b) b2+c2=0

(c) b2+d2=0

(d) a2+b2=c2+d2

Thinking Process

If two complex numbers z1=x1+iy1 and z2=x2+iy2 are equal, then

|z1|=|z2|x12+y12=x22+y22

Show Answer

Solution

(d) Given that,

a+ib=c+id|a+ib|=|c+id|a2+b2=c2+d2

On squaring both sides, we get

a2+b2=c2+d2

45. The complex number z which satisfies the condition |i+ziz|=1 lies on

(a) circle x2+y2=1

(b) the X-axis

(c) the Y-axis

(d) the line x+y=1

Show Answer

Solution

(b) Given that, |i+ziz|=1

Let z=x+iy

|x+i(y+1)xi(y1)|=1x2+(y+1)2x2+(y1)2=1x2+(y+1)2=x2+(y1)24y=0y=0

So, z lies on X-axis (real axis).

46. If z is a complex number, then

(a) |z2|>|z|

(b) |z2|=|z|2

(c) |z2|<|z|2

(d) |z2||z|2

Show Answer

Solution

(b) If z is a complex number, then z=x+iy

|z|=|x+iy| and |z|2=|x+iy|2|z|2=x2+y2…(i) and z2=(x+iy)2=x2+i2y2+i2xyz2=x2y2+i2xy|z2|=(x2y2)2+(2xy)2|z2|=x4+y42x2y2+4x2y2|z2|=x4+y4+2x2y2=(x2+y2)2|z2|=x2+y2…(ii)

From Eqs. (i) and (ii),

|z|2=|z2|

47. |z1+z2|=|z1|+|z2| is possible, if

(a) z2=z¯1

(b) z2=1z1

(c) arg(z1)=arg(z2)

(d) |z1|=|z2|

Show Answer

Solution

(c) Given that,

|r1(cosθ1+isinθ1)+r2(cosθ2+isinθ2)|=|r1(cosθ1+isinθ1)|+|r2(cosθ2+isinθ2)|

|(r1cosθ1+r2cosθ)+i(r1sinθ1+r2sinθ2)|=r1+r2

r12cos2θ1+r22cos2θ2+2r1r2cosθ1cosθ2+r12sin2θ1+r22sin2θ2

r12+r22+2r1r2[cos(θ1θ2)]=r1+r2

+2r1r2sinθ1sinθ2=r1+r2

On squaring both sides, we get

r12+r22+2r1r2cos(θ1θ2)=r12+r22+2r1r22r1r2[1cos(θ1θ2)]=01cos(θ1θ2)=0cos(θ1θ2)=1cos(θ1θ2)=cos0θ1θ2=0θ1=θ2arg(z1)=arg(z2)

48. The real value of θ for which the expression 1+icosθ12icosθ is a real number is

(a) nπ+π4

(b) nπ+(1)nπ4

(c) 2nπ±π2

(d) None of these

Show Answer

Solution

(c) Given expression =1+icosθ12icosθ=(1+icosθ)(1+2icosθ)(12icosθ)(1+2icosθ)

=1+icosθ+2icosθ+2i2cos2θ14i2cos2θ=1+3icosθ2cos2θ1+4cos2θ

For real value of θ,3cosθ1+4cos2θ=0

3cosθ=0cosθ=cosπ2θ=2nπ±π2

49. The value of arg(x), when x<0 is

(a) 0

(b) π2

(c) π

(d) None of these

Show Answer

Solution

(c) Let

z=x+0i and x<0|z|=(1)2+(02)=1

Since, the point (x,0) represent z=x+0i lies on the negative side of real axis.

Principal arg(z)=π

50. If f(z)=7z1z2, where z=1+2i, then |f(z)| is equal to

(a) |z|2

(b) |z|

(c) 2|z|

(d) None of these

Show Answer

Solution

(a)

Let z=1+2i|z|=1+4=5Now, f(z)=7z1z2=712i1(1+2i)2=62i114i24i=62i44i=(3i)(2+2i)(22i)(2+2i)=62i+6i2i244i2=6+4i+24+4=8+4i8=1+12if(z)=1+12i

|f(z)|=1+14=4+14=52=|z|2



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane