Trigonometric Functions

Short Answer Type Questions

1. Prove that tanA+secA1tanAsecA+1=1+sinAcosA.

Thinking Process

Here, use the formulae i.e., sec2Atan2A=1 and a2b2=(a+b)(ab) to solve the above problem.

Show Answer

Solution

LHS=tanA+secA1tanAsecA+1=tanA+secA(sec2Atan2A)(tanAsecA+1)[sec2Atan2A=1]=(tanA+secA)(secA+tanA)(secAtanA)(1secA+tanA)=(secA+tanA)(1secA+tanA)1secA+tanA=secA+tanA=1cosA+sinAcosA=1+sinAcosA=RHS Hence proved. 

2. If 2sinα1+cosα+sinα=y, then prove that 1cosα+sinα1+sinα is also equal to y.

Show Answer

Solution

Given that, 2sinα1+cosα+sinα=y

 Now, 1cosα+sinα1+sinα=(1cosα+sinα)(1+sinα)(1+cosα+sinα)(1+cosα+sinα)=(1+sinα)cosα(1+sinα)(1+sinα)+cosα(1+cosα+sinα)=(1+sinα)2cos2α(1+sinα)(1+sinα+cosα)=(1+sin2α+2sinα)cos2α(1+sinα)(1+sinα+cosα)

=1+sin2α+2sinα1+sin2α(1+sinα)(1+sinα+cosα)=2sin2α+2sinα(1+sinα)(1+sinα+cosα)=2sinα(1+sinα)(1+sinα)(1+sinα+cosα)=2sinα1+sinα+cosα=y

Hence proved.

3. If msinθ=nsin(θ+2α), then prove that tan(θ+α)cotα=m+nmn.

Show Answer

Solution

Given that,

 Given that, msinθ=nsin(θ+2α)sin(θ+2α)sinθ=mn

Using componendo and dividendo, we get

sin(θ+2α)+sinθsin(θ+2α)sinθ=m+nmn2sinθ+2α+θ2cosθ+2αθ22cosθ+2α+θ2sinθ+2αθ2=m+nmn[sinx+siny=2sinx+y2cosxy2. and .sinxsiny=2cosx+y2sinxy2]sin(θ+α)cosαcos(θ+α)sinα=m+nmntan(θ+α)cotα=m+nmn Hence proved. 

4. If cos(α+β)=45 and sin(αβ)=513, where α lie between 0 and π4, then find that value of tan2α.

Show Answer

Solution

Given that,

cos(α+β)=45 and sin(αβ)=513

sin(α+β)=11625=925=±35

sin(α+β)=35

 and cos(αβ)=125169=144169=±1213

cos(αβ)=1213

 Now, tan(α+β)=sin(α+β)cos(α+β)

[ since, α lies between 0 and π4]

=3545=34

 and tan(αβ)=sin(αβ)cos(αβ)=5131213=512

tan2α=tan(α+β+αβ)

=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)[tan(x±y)=tanx±tany1tanxtany]

=34+512134512=9+51216516=14×1612×11=5633

5. If tanx=ba, then find the value of a+bab+aba+b.

Thinking Process

First of all rationalise the given expression and used the formula, i.e., cos2x=cos2xsin2x.

Show Answer

Solution

Given that, tanx=ba

a+bab+aba+b=(a+b)2+(ab)2(ab)(a+b)

=(a+b)+(ab)a2b2=2aa2b2=2aa1ba[ba=tan]

=21tan2x=2cosxcos2xsin2x[cos2x=cos2xsin2x]x

=2cosxcos2x

6. Prove that cosθcosθ2cos3θcos9θ2=sin7θsin8θ.

Show Answer

Solution

LHS =cosθcosθ2cos3θcos9θ2

=122cosθcosθ22cos3θcos9θ2=12cosθ+θ2+cosθθ2cos3θ+9θ2cos3θ9θ2=12(cos3θ2+cosθ2cos15θ2cos3θ2.=12cosθ2cos15θ2

=122sinθ+15θ2sinθ15θ2

[cosxcosy=2sinx+y2sinxy2]

=+(sin8θsin7θ)=RHS

 LHS = RHS 

Hence Proved

7. If acosθ+bsinθ=m and asinθbcosθ=n, then show that a2+b2=m2+n2.

Show Answer

Solution

Given that,

and

acosθ+bsinθ=m..(i)

asinθbcosθ=n..(ii)

On squaring and adding of Eqs. (i) and (ii), we get

m2+n2=(acosθ+bsinθ)2+(asinθbcosθ)2

=a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ

m2+n2=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)2absinθcosθ

m2+n2=a2+b2 Hence proved. 

8. Find the value of tan2230.

Show Answer

Solution

Let

 Let θ=45

 We know that, tanθ2=sinθ2cosθ2=2sinθ2cosθ22cos2θ2tanθ2=sinθ1+cosθ

tan2230=sin451+cos45[θ=45]

=121+12=12+1

9. Prove that sin4A=4sinAcos3A4cosAsin3A.

Thinking Process

Here, apply the formula i.e., sin2x=2sinxcosx and cos2x=cos2xsin2x

Show Answer

Solution

LHS=sin4A

=2sin2Acos2A

=2(2sinAcosA)(cos2Asin2A)

=4sinAcos3A4cosAsin3A

[cos2A=cos2Asin2A and sin2A=2sinAcosA]

LHS=RHSHence Proved

10. If tanθ+sinθ=m and tanθsinθ=n, then prove that m2n2=4sinθtanθ.

Show Answer

Solution

Now,

Also, Given that,

tanθ+sinθ=m..(i)

andtanθsinθ=n..(ii)

Nowm+n=tanθ+sinθ+tanθsinθ

m+n=2tanθ(iii)

alsomn=tanθ+sinθtanθ+sinθ

mn=2sinθ(iv)

From Eqs. (iii) and (iv),

(m+n)(mn)=4sinθtanθm2n2=4sinθtanθHence Proved

11. If tan(A+B)=p and tan(AB)=q, then show that tan2A=p+q1pq.

Show Answer

Solution

Given that tan(A+B)=p..(i)

and tan(AB)=q..(ii)

tan2A=tan(A+B+AB)

=tan(A+B)+tan(AB)1tan(A+B)tan(AB)[tan(x+y)=tanx+tany1tanxtany]

=p+q1pq [from Eqs. (i) and (ii)]

12. If cosα+cosβ=0=sinα+sinβ, then prove that cos2α+cos2β=2cos(α+β).

Show Answer

Solution

Given that, cosα+cosβ=0=sinα+sinβ

(cosα+cosβ)2(sinα+sinβ)2=0

cos2α+cos2β+2cosαcosβsin2αsin2β2sinαsinβ=0

cos2αsin2α+cos2βsin2β=2(sinαsinβcosαcosβ)

cos2α+cos2β=2cos(α+β)

Hence proved.

13. If sin(x+y)sin(xy)=a+bab, then show that tanxtany=ab.

Show Answer

Solution

Given that, sin(x+y)sin(xy)=a+bab

Using componendo and dividendo,

⇒=sin(x+y)+[sin(xy)]sin(x+y)sin(xy)=a+b+aba+ba+b

⇒=2sinx+y+xy2cosx+yx+y22cosx+y+xy2sinx+yx+y2=2a2b

[sinx+siny=2sinx+y2cosxy2 and sinxsiny=2cosx+y2sinxy2]

⇒=sinxcosycosxsiny=ab

tanxtany=ab

14. If tanθ=sinαcosαsinα+cosα, then show that sinα+cosα=2cosθ.

Show Answer

Solution

Given that, tanθ=sinαcosαsinα+cosα

tanθ=cosα(tanα1)cosα(tanα+1)tanθ=tanαtanπ41+tanπ4tanα[tanπ4=1]

Trigonometric Functions

tanθ=tan(απ4)

θ=απ4α=θ+π4

sinα+cosα=sin(θ+π4)+cos(θ+π4)

=sinθcosπ4+cosθsinπ4+cosθcosπ4sinθsinπ4

=12sinθ+12cosθ+12cosθ12sinθ[sinπ4=cosπ4=12]

=22cosθ=2cosθ

15. If sinθ+cosθ=1, then find the general value of θ.

Thinking Process

If sinθ=sinα, then θ=nπ+(1)nα, gives general solution of the given equation.

Show Answer

Solution

Given that, sinθ+cosθ=1

On squaring both sides, we get

sin2θ+cos2θ+2sinθcosθ=1

1+2sinθcos=1[sin2x=2sinxcosx]

sin2θ=02θ=nπ+(1)n0

θ=nπ2

Alternate Method

sinθ+cosθ=1

12sinθ+12cosθ=12

sinθcosπ4+cosθsinπ4=12sinπ4=12=cosπ4

sinθ+π4=sinπ4[sin(x+y)=sinxcosy+cosxsiny]

θ+π4=nπ+(1)nπ4

θ=nπ+(1)n44π4

16. Find the most general value of θ satisfying the equation tanθ=1 and cosθ=12.

Show Answer

Solution

The given equations are

tanθ=1..(i)

 and cosθ=12..(ii)

 From Eq. (i), tanθ=tanπ4

tanθ=tan(2ππ4)tanθ=tan7π4

θ=7π4

From Eq. (ii),

cosθ=cos(2ππ4)cosθ=cos7π4

θ=7π4

Hence, the most general value of θ i.e., θ=2nπ+7π4.

17. If cotθ+tanθ=2cosecθ, then find the general value of θ.

Show Answer

Solution

Given that,

cotθ+tanθ=2cosecθ

cosθsinθ+sinθcosθ=2sinθ

cos2+sin2θsinθcosθ=2sinθ

1cosθ=2[sin2θ+cos2θ=1]

cosθ=12cosθ=cosπ3

θ=2nπ±π3

18. If 2sin2θ=3cosθ, where 0θ2π, then find the value of θ.

Show Answer

Solution

Given that,

Given that ,2sin2θ=3cosθ

22cos2θ=3cosθ

2cos2θ+3cosθ=0

2cos2θ+4cosθcosθ2=0

2cosθ(cosθ+2)1(cosθ+2)=0

(cosθ+2)(2cosθ1)=0

cosθ=2notpossible[1cosθ1]

2cosθ=1

cosθ=12

cosθ=cosπ3

θ=π3

Also,cosθ=cos(2ππ3)

cosθ=cos5π6

θ=5π6

So, the values of θ are π3 and 5π6.

19. If secxcos5x+1=0, where 0<xπ2, then find the value of x.

Show Answer

Solution

Given that, secxcos5x+1=0

cos5xcosx+1=0cos5x+cosx=0

2cos(5x+x2)cos(5xx2)=0

[cosx+cosy=2cosx+y2cosxy2]

2cos3xcos2x=0

cos3x=0 or cos2x=0

cos3x=cosπ2 or cos2x=cosπ2

3x=π22x=π2

x=π6x=π4

Hence, the solutions are π2,π4 and π6.

Long Answer Type Questions

20. If sin(θ+α)=a and sin(θ+β)=b, then prove that cos(α+β)4abcos(αβ)=12a22b2.

Thinking Process

Express cos(αβ)=cos(θ+α)(θ+β)

Show Answer

Solution

Given that, sin(θ+α)=a..(i)

and

sin(θ+β)=b..(ii)

cos(θ+α)=1a2 and cos(θ+β)=1b2

cos(αβ)=cosθ+α(θ+β)

=cos(θ+β)cos(θ+α)+sin(θ+α)sin(θ+β)

=1a21b2+ab=ab+(1a2)(1b2)=ab+1a2b2+a2b2

and

cos(αβ)=ab+1a2b2+a2b2

=cos2(αβ)4abcos(αβ)

=2cos2(αβ)14abcos(αβ)

=2cos(αβ)(cosαβ2ab)1

=2(ab+1a2b2+a2b2)(ab+1a2b2+a2b22ab)1

=2[(1a2b2+a2b2+ab)(1a2b2+a2b2ab)]1

=2[1a2b2+a2b2a2b2]1

=22a22b21

=12a22b2HenceProved

21. If cos(θ+φ)=mcos(θφ), then prove that tanθ=1m1+mcotφ.

Show Answer

Solution

Given that,

cos(θ+φ)=mcos(θφ)cos(θ+φ)cos(θφ)=m1

Using componendo and dividendo rule,

cos(θφ)cos(θ+φ)cos(θφ)+cos(θ+φ)=1m1+m

2sinθφ+θ+φ2sinθφθφ22cosθφ+θ+φ2cosθφθφ2=1m1+m

sinθsinφcosθcosφ=1m1+m[sin(θ)=sinθandcos(θ)=cosθ]

tanθtanφ=1m1+m

tanθ=1m1+mcotφ

22. Find the value of the expression

3[sin43π2α+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)].

Show Answer

Solution

Given expression,

3[sin4(3π2)α+sin4(3π+α)]2[sin6π2+α+sin6(5πα)]=3[cos4α+sin4(π+α)]2[cos6α+sin6(πα)]=3[cos4α+sin4α]2[cos6α+sin6α]=32=1

23. If acos2θ+bsin2θ=c has α and β as its roots, then prove that tanα+tanβ=2ba+c.

Show Answer

Solution

Given that, acos2θ+bsin2θ=c

a1tan2θ1+tan2θ+b2tanθ1+tan2θ=c

[sin2θ=2tanθ1+tan2θ and cos2θ=1tan2θ1+tan2θ]

a(1tan2θ)+2btanθ=c(1+tan2θ)

aatan2θ+2btanθ=c+ctan2θ

(a+c)tan2θ2btanθ+ca=0

Since, this equation has tanα and tanβ as its roots.

tanα+tanβ=(2b)a+c=2ba+c

24. If x=secφtanφ and y=cosecφ+cotφ, then show that xy+xy+1=0.

Show Answer

Solution

Given that, and x=secφtanφ..(i)

Now,

y=cosecφ+cotφ..(ii)

xy=secφcosecφcosecφtanφ+secφcotφtanφcotφ

xy=secφcosecφ1cosφ+1sinφ1

1+xy=secφcosecφsecφ+cosecφ..(iii)

From Eqs. (i) and (ii), we get

xy=secφtanφcosecφcotφ

xy=secφcosecφsinφcosφcosφsinφ

xy=secφcosecφ(sin2φ+cos2φsinφcosφ)

xy=secφcosecφ1sinφcosφ

xy=secφcosecφcosecφsecφxy=(secφcosecφsecφ+cosecφ)xy=(xy+1)xy+xy+1=0[from Eq. (iii)] Hence proved.

25. If θ lies in the first quadrant and cosθ=817, then find the value of cos(30+θ)+cos(45θ)+cos(120θ).

Show Answer

Solution

Given that,

sinθ=28964289

sinθ=±1517

sinθ=1517[Since,θlies in first quadrant ]

 Now, cos(30+θ)+cos(45θ)+cos(120θ)

=cos(30+θ)+cos(45θ)+cos(90+30θ)

=cos(30+θ)+cos(45θ)sin(30θ)

=cos30cosθsin30sinθ+cos45cosθ+sin45sinθ

=32cosθ12sinθ+12cosθ+12sinθ12cosθ32sinθ

=32+1212cosθ+1212+32sinθ

=6+2222cosθ+22+622sinθ

=6+2222817+22+6221517

=117(22)(86+1682+30152+156)=117(22)(236232+46)=23617(22)23217(22)+4617(22)=23317(2)2317(2)+23172=2317312+12

26. Find the value of cos4π8+cos43π8+cos45π8+cos47π8.

Show Answer

Solution

Given expression, cos4π8+cos43π8+cos45π8+cos47π8

=cos4π8+cos43π8+cos4π3π8+cos4ππ8=cos4π8+cos43π8+cos4(3π8)+cos4(π8)=2[cos4π8+cos43π8]=2[cos4π8+cos4(π2π8)]=2[cos4π8+sin4π8]=2[cos2π8+sin2π282cos2π8sin2π8]=212cos2π8sin2π8=22sinπ8cosπ28=2sin(2π8)2=2(12)=212=32

27. Find the general solution of the equation 5cos2θ+7sin2θ6=0.

Show Answer

Solution

Given equation,

5cos2θ+7sin2θ6=05cos2+7(1cos2θ)6=05cos2θ+77cos2θ6=05cos2θ+77cos2θ6=02cos2θ+1=02cos2θ1=0[cos2θ=cos2α]cos2θ=12θ=nπ±αcos2θ=cos2π4θ=nπ±π4

28. Find the general of the equation sinx3sin2x+sin3x =cosx3cos2x+cos3x.

Show Answer

Solution

Given equation, sinx3sin2x+sin3x=cosx3cos2x+cos3x

2sin(x+3x2)cos(3xx2)3sin2x=2cos(3x+x2)cos(3xx2)3cos2x2sin2xcosx3sin2x=2cos2xcosx3cos2xsin2x(2cosx3)=cos2x(2cosx3)sin2xcos2x=1tan2x=1tan2x=tanπ42x=nπ+π4x=nπ2+48

29. Find the general solution of the equation

Show Answer

Solution

Given equation is,

(31)cosθ+(3+1)sinθ=2..(i)

 Put 31=rsinα and 3+1=rcosαr2=(31)2+(3+1)2=3+123+3+1+23r2=8r=22 now, tanα=313+1=tanπ3tanπ41+tanπ3π4tanα=tanπ3π4tanα=tanπ12α=π12

From Eq. (i), rsinαcosθ+rcosαsinθ=2

r[sin(θ+α)]=2sin(θ+α)=222sin(θ+α)=12sin(θ+α)=sinπ4θ+α=nπ+(1)nπ4θ=nπ+(1)nπ4π12

Alternate Method

(31)cosθ+(3+1)sinθ=2Put31=rcosα and 3+1=rsinαr=22

Now,tanα=3+131=1+13113

tanα=tanπ4+tanπ61tanπ4tanπ6tanα=tanπ4+π6tanα=tan5π12

α=5π12

From Eq. (i), rcosαcosθ+rsinαsinθ=2

r[cos(θα)]

cos(θα)=222

cos(θα)=12

cos(θα)=cosπ4

θα=2nπ±π4

θ=2nπ±π4+5π12

Objective Type Questions

30. If sinθ+cosecθ=2, then sin2θ+cosec2θ is equal to

(a) 1

(b) 4

(c) 2

(d) None of these

Show Answer

Solution

(c) Given that, sinθ+cosecθ=2

sin2θ+cosec2θ+2sinθcosecθ=4

sin2θ+cosec2θ=42

sin2θ+cosec2θ=2

31. If f(x)=cos2x+sec2x, then

(a) f(x)<1

(b) f(x)=1

(c) 2<f(x)<1

(d) f(x)2

Show Answer

Solution

(d) Given that, f(x)=cos2x+sec2x

We know that, AMGM

cos2x+sec2x2cos2xsec2x

cos2x+sec2x2

[cosxsecx=1]

f(x)2

32. If tanθ=12 and tanφ=13, then the value of θ+φ is

(a) π6

(b) π

(c) 0

(d) π4

Show Answer

Solution

(d) Given that,

 Now, tan(θ+φ)=tanθ+tanφ1tanθtanφtan(θ+φ)=12+1311213tan(θ+φ)=3+266616=55=1tan(θ+φ)=tanπ4θ+φ=π4

33. Which of the following is not correct?

(a) sinθ=15

(b) cosθ=1

(c) secθ12

(d) tanθ=20

Show Answer

Solution

(c) We know that, the range of secθ is R(1,1).

Hence, secθ cannot be equal to 12.

34. The value of tan1tan2tan3tan89 is

(a) 0

(b) 1

(c) 12

(d) Not defined

Show Answer

Solution

(b) Given expression, tan1tan2tan3tan89

=tan1tan2tan45tan(9044)tan(9043)tan(901)=tan1cot1tan2cot2tan89cot89=1111=1

35. The value of 1tan2151+tan215 is

(a) 1

(b) 3

(c) 32

(d) 2

Show Answer

Solution

(c) Given expression, 1tan2151+tan215

 Let θ=15 We know that, cos2θ=1+tan2θcos30=1tan2151+tan2151tan2151+tan215=32[cos30=32]

36. The value of cos1cos2cos3cos179 is

(a) 12

(b) 0

(c) 1

(d) -1

Show Answer

Solution

(b) Given expression, cos1cos2cos3cos179

=cos1cos2cos90cos179[cos90=0]=0

37. If tanθ=3 and θ lies in third quadrant, then the value of sinθ is

(a) 110

(b) 110

(c) 310

(d) 310

Show Answer

Solution

(c)

Given that,tanθ=3

sec2θ=1+tan2θ

secθ=1+9=±10

secθ=10

cosθ=110

sinθ=±1110=±910=±310 [since, θ lies in third quadrant]

sinθ=310

38. The value of tan75cot75 is

(a) 23

(b) 2+3

(c) 23

(d) 1

Show Answer

Solution

(a) Given expression, tan75cot75

=sin75cos75cos75sin75=sin275cos275sin75cos7=2cos150sin150=2cos(90+60)sin(90+60)=+2sin60cos60=23212=23

39. Which of the following is correct?

(a) sin1>sin1

(b) sin1<sin1

(c) sin1=sin1

(d) sin1=π18sin1

Show Answer

Solution

(b) We know that, if θ is increasing, then sinθ is also increasing.

sin1<sin1[1rad=5730]

40. If tanα=mm+1 and tanβ=12m+1, then α+β is equal to

(a) π2

(b) π3

(c) π6

(d) π4

Show Answer

Solution

(d) Given that, tanα=mm+1 and tanβ=12m+1

Now,tan(α+β)=tanα+tanβ1tanαtanβ

tan(α+β)=mm+1+12m+11mm+112m+1tan(α+β)=m(2m+1)+m+1(m+1)(2m+1)mtan(α+β)=2m2+m+m+12m2+2m+m+1mtan(α+β)=2m2+2m+12m2+2m+1tan(α+β)=1α+β=π4

41. The minimum value of 3cosx+4sinx+8 is

(a) 5

(b) 9

(c) 7

(d) 3

Thinking Process

For the expression Acosθ+Bsinθ, then the minimum value is A2+B2.

Show Answer

Solution

(d) Given expression, 3cosx+4sinx+8

 Let y=3cosx+4sinx+8y8=3cosx+4sinx Minimum value of y8=9+16y8=5y=5+8y=3

Hence, the minimum value of 3cosx+4sinx+8 is 3 .

42. The value of tan3Atan2AtanA is

(a) tan3Atan2AtanA

(b) tan3Atan2AtanA

(c) tanAtan2Atan2Atan3Atan3AtanA

(d) None of the above

Show Answer

Solution

(a)

Let3A=A+2Atan3A=tan(A+2A)

tan3A=tanA+tan2A1tanAtan2A

tanA+tan2A=tan3Atan3Atan2AtanA

tan3Atan2AtanA=tan3Atan2AtanA

43. The value of sin(45+θ)cos(45θ) is

(a) 2cosθ

(b) 2sinθ

(c) 1

(d) 0

Thinking Process

Use formula i.e., sin(A+B)=sinAcosB+cosAsinB and cos(AB)=cosAcosB+sinAsinB.

Show Answer

Solution

(d) Given expression,

sin(45+θ)cos(45θ)=sin45cosθ+cos45sinθcos45cosθsin45sinθ=12cosθ+12sinθ12cosθ12sinθ=0

44. The value of cot(π4+θ)cot(π4θ) is

(a) -1

(b) 0

(c) 1

(d) Not defined

Thinking Process

 Use formula i.e., (cot(A+B)=cotAcotB1cotA+cotB) and cot(AB)=(cotAcotB+1cotAcotB)

Show Answer

Solution

(c)

Given expression,(cotπ4+θ)cot(π4θ)=(cotπ4cotθ1cotπ4+cotθ)(cotπ4cotθ+1cotθcotπ4)=(cotθ1cotθ+1)(cotθ+1cotθ1)=1

45. cos2θcos2φ+sin2(θφ)sin2(θ+φ) is equal to

(a) sin2(θ+φ)

(b) cos2(θ+φ)

(c) sin2(θφ)

(d) cos2(θφ)

Show Answer

Solution

(b) Given expression, cos2θcos2φ+sin2(θφ)sin2(θ+φ)

=cos2θcos2φ+sin(θφ+θ+φ)sin(θφθφ)=cos2θcos2φsin2θsin2φ=cos(2θ+2φ)=cos2(θ+φ)

46. The value of cos12+cos84+cos156+cos132 is

(a) 12

(b) 1

(c) 12

(d) 18

Thinking Process

Use the formula cosA+cosB=2cosA+B2cosAB2 and

cosAcosB=2sinA+B2sinAB2 to solve this problem.

Show Answer

Solution

(c) Given expression, cos12+cos84+cos150+cos132

=cos12+cos150+cos84+cos132

=2cos(12+1502)cos(121502)+2cos(84+1322)cos(841322)

=2cos84cos72+2cos108cos24

=2cos84cos(9018)+2cos(90+18)cos24

=2cos84sin182sin18cos24

=2sin18(cos84cos24)

=2sin182sin(84+242)sin(84242)

=4sin18sin54sin30

=4514cos3612

=(51)5+1412=518=48=12

47. If tanA=12 and tanB=13, then tan(2A+B) is equal to

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer

Solution

(c) Given that, tanA=12 and tanB=13

Now, tan(2A+B)=tan2A+tanB1tan2AtanB

Also, tan2A=2tanA1tan2A=212114=43

From Eq. (i), tan(2A+B)=43+1314313=43+13949=5359=3

48. The value of sinπ10sin13π10 is

(a) 12

(b) 12

(c) 14

(d) 1

Show Answer

Solution

(c) Given expression, sinπ10sin13π10=sinπ10sinπ+3π10

=sinπ10sin3π10=sin18sin54=sin18cos36=5145+14[since,put this value here]=5116=14

49. The value of sin50sin70+sin10 is

(a) 1

(b) 0

(c) 12

(d) 2

Thinking Process

Here, use the formula i.e., sinAsinB=2cosA+B2sinAB2 also sin(θ)=sinθ

Show Answer

Solution

(b) Given expression, sin50sin70+sin10

=2cos(50+702)sin(50702+sin10)=2cos60sin10+sin10=212sin10+sin10=0

50. If sinθ+cosθ=1, then the value of sin2θ is

(a) 1

(b) 12

(c) 0

(d) -1

Show Answer

Solution

(c) Given that, sinθ+cosθ=1

On squaring both sides, we get

sin2θ+cos2θ+2sinθcosθ=1

1+sin2θ=1

sin2θ=0

51. If α+β=π4, then the value of (1+tanα)(1+tanβ) is

(a) 1

(b) 2

(c) -2

(d) Not defined

Thinking Process

Formula i.e., tan(A+B)=tanA+tanB1tanAtanB to solve this problem.

Show Answer

Solution

(b) Given that, α+β=π4

Now, (1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ(i)

We know that, tan(α+β)=tanα+tanβ1tanαtanβ

1=tanα+tanβ1tanαtanβ..(i)tanα+tanβ=1tanαtanβ

From Eq. (i),

(1+tanα)(1+tanβ)=1+1tanαtanβ+tanαtanβ=2

52. If sinθ=45 and θ lies in third quadrant, then the value of cosθ2 is

(a) 15

(b) 110

(c) 15

(d) 110

Thinking Process

Use cosθ=1sin2θ and cosθ=2cos2θ21.

Show Answer

Solution

(c) Given that, sinθ=45

cosθ=11625=251625=±35cosθ=35 [since, θ lies in third quadrant] 2cos2θ21=352cos2θ2=1352cos2θ2=25cosθ2=±15cosθ2=15 [since, θ lies in third quadrant] 

53. The number of solutions of equation tanx+secx=2cosx lying in the interval [0,2π] is

(a) 0

(b) 1

(c) 2

(d) 3

Show Answer

Solution

(c) Given equation,

tan+secx=2cosx

sinxcosx+1cosx=2cosx

1+sinx=2cos2x

1+sinx=2(1sin2x)

1+sinx=22sin2x

2sin2x+sinx1=0

2sin2x+2sinxsinx1=0

2sinx(sinx+1)1(sinx+1)=0

(sinx+1)(2sinx1)=0

sinx+1=0 or (2sinx1)=0

sinx=1,sinx=12

x=3π2,x=π6

Hence, only two solutions possible.

54. The value of sinπ18+sinπ9+sin2π9+sin5π18 is

(a) sin7π18+sin4π9

(b) 1

(c) cosπ6+cos3π7

(d) cosπ9+sinπ9

Thinking Process

Here, apply the formulae i.e., sinA+sinB=2sinA+B2cosAB2.

Show Answer

Solution

(a) Given expression, sinπ18+sinπ9+sin2π9+sin5π18

=sin10+sin20+sin40+sin50=sin50+sin10+sin40+sin20=sin130+sin10+sin140+sin20=2sin70cos60+2sin80cos60[sinx+siny=2sinx+y2cosxy2]=212sin70+212sin80[cos60=12]=sin70+sin80=sin7π18+sin4π9

55. If A lies in the second quadrant and 3tanA+4=0, then the value of 2cotA5cosA+sinA is

(a) 5310

(b) 2310

(c) 3710

(d) 710

Thinking Process

Use the formulae i.e., secA=1+tan2A and sinA=1cos2A,secA=1cosA and tanA=1cotA.

Show Answer

Solution (b)

Given equation,3tanA+4=03tanA=4tanA=43cotA=34secA=1+169=259=±53 [since, A lies in second quadrant] secA=53cosA=35sinA=1925=25925=±45sinA=45 [since, A lies in second quadrant] 

2cotA5cosA+sinA=234535+45=64+3+45=30+60+1620=4620=2310

56. The value of cos248sin212 is

(a) 5+18

(b) 518

(c) 5+15

(d) 5+122

Show Answer

Solution

(a) Given expression, cos248sin212

=cos(48+12)cos(4812)=cos60cos36=125+14=5+18

57. If tanα=17 and tanβ=13, then cos2α is equal to

(a) sin2β

(b) sin4β

(c) sin3β

(d) cos2β

Thinking Process

Use cos2α=1tan2α1+tan2α and sin2α=2tanα1+tan2α

Show Answer

Solution

(b) Given that,

cos2α=11491+149=48495049=4850=2425cos2α=2425..(i) We know that, sin4β=2tan2β1+tan22β..(ii) and tan2β=2tan21tan2β=2×13119=239=2×93×8=34

tan=17 and tanβ=13

From Eq, (ii),

sin4β=2×341+916=642516=6×164×25

sin4β=2425

sin4β=cos2α

cos2α=sin4β

58. If tanθ=ab, then bcos2θ+asin2θ is equal to

(a) a

(b) b

(c) ab

(d) None of these

Show Answer

Solution

(b) Given that, tanθ=ab

bcos2θ+asin2θ=b(1tan2θ1+tan2θ)+a(2tanθ1+tan2θ)=b(1a2b21+a2b2)+a(2ab1+a2b2)=b(b2a2b2+a2)+2a2ba2+b2=ba2+b2[b2a2+2a2]=(a2+b2)b(a2+b2)=b

59. If for real values of x,cosθ=x+1x, then

(a) θ is an acute angle

(b) θ is right angle

(c) θ is an obtuse angle

(d) No value of θ is possible

Thinking Process

The quadratic equation ax2+bx+c=0 has real roots, then b24ac=0, use this condition to solve the above problem.

Show Answer

Solution

(d)

Here,cosθ=x+1xcosθ=x2+1xx2xcosθ+1=0

For real value of x,(cosθ)24×1×1=0

cos2θ=4cosθ=±2

which is not possible.

[1cosθ1]

Fillers

60. The value of sin50sin130 is ……

Show Answer

Solution

Here,

sin50sin130=sin(180130)sin130=sin130sin130=1

61. If k=sin(π18)sin(5π18)sin(7π18), then the numerical value of k is ……

Show Answer

Solution Here, k=sin(π18)sin(5π18)sin(7π18)

=sin10sin50sin70

=sin10cos40cos20=12sin10[2cos40cos20]=12sin10[cos60+cos20][2cosxcosy=cos(x+y)+cos(xy)]=12sin1012+12sin10cos20=14sin10+14[sin30sin10]=18

62. If tanA=1cosθsinB, then tan2A= ……

Thinking Process

Use cosθ=12sin2θ2 and tan2θ=2tanθ1tan2θ.

Show Answer

Solution

Given that,

tanA=1cosBsinB=11+2sin2B22sinB2cosB2=tanB2

Now,tan2A=2tanA1tan2A

tan2A=2tanB21tan2B2

tan2A=tanB

63. If sinx+cosx=a, then

(i) sin6x+cos6x=.

(ii) |sinxcosx|=

Show Answer

Solution

Given that, sinx+cosx=a

On squaring both sides, we get

(sinx+cosx)2=(a)2sin2x+cos2x+2sinxcosx=a2sinxcosx=12(a21)(i)sin6x+cos6x=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=sin4x+cos4x14(a21)2=(sin2x+cos2x)22sin2xcos2x14(a21)2=1214(a21)214(a21)2=14[43(a21)2]

(ii) |sinxcosx|=(sinxcosx)2

=sin2x+cos2x2sinxcosx=1212(a21)=1a2+1=2a2

64. In right angled ABC with C=90 the equation whose roots aretanA and tanB is ……

Show Answer

Solution

In right angled ABC,C=90

tan(A+B)=tanA+tanB1tanAtanB10=tanA+tanB1tanAtanBtanAtanB=1tanA+tanB=sinAcosA+sinBcosB=sinAcosA+cosAsinA=sin2A+cos2AsinAcosA=1sinAcosA=22sinAcosA

=sinAcosA+sin(90A)cos(90A)[C=90,B=90A]=sinAcosA+cosAsinA=sin2A+cos2AsinAcosA=1sinAcosA=22sinAcosA=2sin2A[sin2x=2sinxcosx]

So, the required equation is x22sinAx+1.

sin2x=2sinxcosx

65. 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)= ……

Thinking Process

Use formulae i.e., (a3+b3)=(a+b)(a2ab+b2) and a2+b2=(a+b)22ab.

Show Answer

Solution

Given expression, 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)

=3[sin2x+cos2x2sinxcosx]2+6[sin2x+cos2x+2sinxcosx]+4[(sin2x)3+(cos2x)3]=3(1sin2x)2+6(1+sin2x)+4[(sin2+cos2x)(sin4xsinxcos2x+cos4x).=3(1+sin223x2sin2x)+6+6sin2x+4[(sin2x+cos2x)23sinxcos2x]=3+3sin22x6sin2x+6+6sin2x=43sin22x=13

66. Given x>0, the value of f(x)=3cos3+x+x2 lie in the interval ……

Show Answer

Solution

Given function, f(x)=3cos3+x+x2

We know that,1cosx133cosx333cosx33cosx3

So, the value of f(x) lies in [3,3].

67. The maximum distance of a point on the graph of the function y=3sinx+cosx from X-axis is ……

Show Answer

Solution

Given that, y=3sinx+cosx

y=2[32sinx+12cosx]=2[sinxcosπ6+cosxsinπ6]=2sin(x+π/6)

Graph of y=2sinx

Hence, the maximum distance is 2 units.

True/False

68. In each of the questions 68 to 75 , state whether the statements is True or False? Also, give justification.

Thinking Process

 If tanA=1cosBsinB, then tan2A=tanB

Show Answer

Solution

True

Given that,tanA=1cosBsinB=11+2sin2B22sinB2cosB2=tanB2Now,tan2A=2tanA1tan2A=2tanB21tan2B2=tanB

69. The equality sinA+sin2A+sin3A=3 holds for some real value of A.

Show Answer

Solution

False

Given that, sinA+sin2A+sin3A=3

It is possible only if sinA,sin2A,sin3A each has a value one because maximum value of sinA is a certain angle is 1 . Which is not possible because angle are different.

70. sin10 is greater than cos10.

Show Answer

Solution

False

sin10=sin(9080)

sin10=cos80

cos80<cos10

Hence,sin10<cos10

71. cos2π15cos4π15cos8π15cos16π15=116

Show Answer

Solution

True

 LHS =cos2π15cos4π15cos8π15cos16π15=cos24cos48cos96cos192=116sin24[(2sin24cos24)(2cos48)(2cos96)(2cos192)]=116sin24[2sin48cos48(2cos96)(2cos192)]=116sin24[(2sin96cos96)(2cos192)]=116sin24[2sin192cos192)=116sin24sin384=sin(360+24)16sin24=116=RHS Hence proved. 

72. One value of θ which satisfies the equation sin4θ2sin2θ1 lies between 0 and 2π.

Show Answer

Solution

False

Given equation, sin4θ2sin2θ1=0

sin2θ=2±4+42

sin2θ=2±222

sin2θ=(1+2) or (12)1sinθ1

sin2θ1

sin2θ=2+1 or (12)

which is not possible.

73. If cosecx=1+cotx, then x=2nπ,2nπ+π2

Show Answer

Solution

True

Given that,

cosecx=1+cotx1sinx=1+cosxsinx1sinx=sinx+cosxsinx

sinx+cosx=1

12sinx+12cosx=12

sinπ4sinx+cosxcosπ4=12

cos(xπ4)=cosπ4

xπ4=2nπ±π4

For positive sign,x=2nπ+π4+π4=2nπ+π2For negative sign,x=2nππ4+π4=2nπ

74. If tanθ+tan2θ+3tanθtan2θ=3, then θ=nπ3+π9.

Show Answer

Solution

True

tanθ+tan2θ+3tanθtan2θ=3tanθ+tan2θ=33tanθtan2θtanθ+tan2θ=3(1tanθtan2θ)tanθ+tan2θ1tanθtan2θ=3tan(θ+2θ)=tanπ3tan3θ=tanπ33θ=nπ+π3θ=nπ3+π9

75. If tan(πcosθ)=cot(πsinθ), then cosθπ4=±122.

Thinking Process

Use the formulae i.e., tanπ2θ=cotθ and cos(AB)=cosAcosB+sinAsinB.

Show Answer

Solution

True

We have,tan(πcosθ)=cot(πsinθ)

tan(πcosθ)=tanπ2(πsinθ)

πcos=π2πsinθ

π(sinθ+cosθ)=π2

sinθ+cosθ=12

12sinθ+12cosθ=122

sinθsinπ4+cosθcosπ4=122

cosθπ4=122

76. In the following match each item given under the Column I to its correct answer given under the Column II.

Column I Column II
(i) sin(x+y)sin(xy) (a) cos2xsin2y
(ii) cos(x+y)cos(xy) (b) 1tanθ/1+tanθ
(iii) cot(π4+θ) (c) 1+tanθ/1tanθ
(iv) tan(π4+θ) (d) sin2xsin2y
Show Answer

Solution

(i) sin(x+y)sin(xy)=sin2xsin2y

(ii) cos(x+y)cos(xy)=cos2xsin2y

(iii) cotπ4+θ=cotπ4cotθ1cotπ4+cotθ

=1+cotθ1+cotθ=1tanθ1+tanθ

(iv) tanπ4+θ=tanπ4+tanθ1tanπ4tanθ=1+tanθ1tanθ

Hence, the correct mathes are (i) \rarr (d), (ii) \rarr (a), (iii) \rarr (b), (iv) \rarr (c).



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane