Relations and Functions

Short Answer Type Questions

1. If A={1,2,3} and B={1,3}, then determine

(i) A×B

(ii) B×A

(iii) B×B

(iv) A×A

Show Answer

Solution

A={1,2,3} and B={1,3}

(i) A×B={(1,1),(1,3),(2,1),(2,3),(3,1),(3,3)}

(ii) B×A={(1,1),(1,2),(1,3),(3,1),(3,2),(3,3)}

(iii) B×B={(1,1),(1,3),(3,1),(3,3)}

(iv)A×A={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

2. If P={x:x<3,xN},Q={x:x2,xW}, then find (PQ)×(PQ), where W is the set of whole numbers.

Show Answer

Solution

We have,

and

P={x:x<3,xN}={1,2}Q={x:x2,xW}={0,1,2}PQ={0,1,2} and PQ={1,2}(PQ)×(PQ)={0,1,2}×{1,2}={(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)}

PQ={0,1,2} and PQ={1,2}

3. If A={x:xW,x<2},B={x:xN,1<x<5} and C={3,5}, then find

(i) A×(BC)

(ii) A×(BC)

Show Answer

Solution

We have,

and

A={x:xW,x<2}={0,1}B={x:xN,1<x<5}={2,3,4} and C={3,5}

(i) :

BC={3}

A×(BC)={0,1}×{3}={(0,3),(1,3)}

(ii) (BC)={2,3,4,5}

A×(BC)={0,1}×{2,3,4,5}={(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)}

4. In each of the following cases, find a and b.

(i) (2a+b,ab)=(8,3)

(ii) (a4,a2b)=(0,6+b)

Show Answer

Solution

(i) We have, (2a+b,ab)=(8,3)

2a+b=8 and ab=3

[since, two ordered pairs are equal, if their corresponding first and second elements are equal]

On substituting, b=a3 in 2a+b=8, we get

2a+a3=83a3=83a=11a=113

Again, substituting a=113in b=a-3, we get

b=113=1193=23

a=113and b=23

(ii) We have, (a4,a2b)=(0,6+b)

a4=0a=0 and a2b=6+b02b=6+b3b=6b=2a=0,b=2

5. A={1,2,3,4,5},S={(x,y):xA,yA}, then find the ordered which satisfy the conditions given below.

(i) x+y=5

(ii) x+y<5

(iii) x+y>8

Show Answer

Solution

We have, A={1,2,3,4,5} and S={(x,y):xA,yA}

(i) The set of ordered pairs satisfying x+y=5 is,

{(1,4),(2,3),(3,2),(4,1)}.

(ii) The set of ordered pairs satisfying x+y<5 is {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}.

(iii) The set of ordered pairs satisfying x+y>8 is {(4,5),(5,4),(5,5)}.

6. If R={(x,y):x,yW,x2+y2=25}, then find the domain and range of R.

Thinking Process

First, write the relation in Roaster form, then find the domain and range of R.

Show Answer

Solution

We have,

R={(x,y):x,yW,x2+y2=25}={(0,5),(3,4),(4,3),(5,0)}

Range of Domain of R= Set of first element of ordered pairs in R

={0,3,4,5}

R= Set of second element of ordered pairs in R ={5,4,3,0},

7. If R1={(x,y)y=2x+7, where xR and 5x5} is a relation. Then, find the domain and range of R1.

Show Answer

Solution

We have,

R1={(x,y)y=2x+7, where xR and 5x5} Domain of R1={5x5,xR}=[5,5]y=2x+7y=2(5)+7=3y=2(5)+7=17 Range of R1={3y17,yR}=[3,17]

 When x=5, then  When x=5, then  Range of R1={3y17,yR}

8. If R2={x,yx and y are integers and x2+y2=64} is a relation, then find the value of R2.

Show Answer

Solution

We have, R2={(x,y)}x and y are integers and .x2+y2=64}

Since, 64 is the sum of squares of 0 and ±8.

When x=0, then y2=64y=±8

x=8, then y2=64826464=0

x=8, then y2=64(8)2=6464=0

R2=(0,8),(0,8),(8,0),(8,0)}

9. If R3={(x,|x|)x is a real number } is a relation, then find domain and range of R3.

Show Answer

Solution

We have

R3={(x,|x|)x is real number }R3=R

Clearly, domain of

Since, image of any real number under R3 is positive real number or zero.

 Range of R3=R+0} or (0,)

10. Is the given relation a function? Give reason for your answer.

(i) h={(4,6),(3,9),(11,6),(3,11)}

(ii) f={(x,x)x is a real number }

(iii) g={(x,1x)x is a positive integer }

(iv) s={(x,x2)x. is a positive integer }

(v) t={(x,3)x is a real number }

Show Answer

Solution

(i) We have, h={(4,6),(3,9),(11,6),(3,11)}.

Since, 3 has two images 9 and 11. So, it is not a function.

(ii) We have, f={(x,x)x is a real number.

We observe that, every element in the domain has unique image. So, it is a function.

(iii) We have, g=x,.{1x|,x is a positive integer}

For every x, it is a positive integer and 1x is unique and distinct. Therefore, every element in the domain has unique image. So, it is a function.

(iv) We have, s={(x,x2)x. is a positive integer }

Since, the square of any positive integer is unique. So, every element in the domain has unique image. Hence, it is a function.

(v) We have, t={(x,3)x is a real number }.

Since, every element in the domain has the image 3 . So, it is a constant function.

11. If f and g are real functions defined by f(x)=x2+7 and g(x)=3x+5. Then, find each of the following.

(i) f(3)+g(5)

(ii) f(12)×g(14)

(iii) f(2)+g(1)

(iv) f(t)f(2)

(v) f(t)f(5)t5, if t5

Show Answer

Solution

Given, f and g are real functions defined by f(x)=x2+7 and g(x)=3x+5.

(i) f(3)=(3)2+7=9+7=16 and g(5)=3(5)+5=15+5=10

f(3)+g(5)=1610=6

(ii) f(12)=(122)+7=14+7=294

and g(14)=3(14)+5=42+5=47

f(12)×g(14)=294×47=13634

(iii) f(2)=(2)2+7=4+7=11 and g(1)=3(1)+5=3+5=2

f(2)+g(1)=11+2=13 (iv) f(t)=t2+7 and f(2)=(2)2+7=4+7=11

f(t)f(2)=t2+711=t24

(v) f(t)=t2+7 and f(5)=52+7=25+7=32

f(t)f(5)t5, if t5=t2+732t5=t225t5=(t5)(t+5)(t5)=t+5

12. Let f and g be real functions defined by f(x)=2x+1 and g(x)=4x7.

(i) For what real numbers x,f(x)=g(x) ?

(ii) For what real numbers x,f(x)<g(x) ?

Show Answer

Solution

We have,

f(x)=2x+1 and g(x)=4x7

 (i) f(x)=g(x)2x+1=4x72x=8x=4 (ii) f(x)<g(x)2x+1<4x72x4x+1<4x74x2x+1<72x<712x<82x2>82x>4

13. If f and g are two real valued functions defined as f(x)=2x+1 and g(x)=x2+1, then find

(i) f+g

(ii) fg

(iii) fg

(iv) fg

Show Answer

Solution

We have, f(x)=2x+1 and g(x)=x2+1

(i) (f+g)(x)=f(x)+g(x)

=2x+1+x2+1=x2+2x+2

(ii) (fg)(x)=f(x)g(x)=(2x+1)(x2+1)

=2x+1x21=2xx2=x(2x)

(iii) (fg)(x)=f(x)g(x)=(2x+1)(x2+1)

=2x3+2x+x2+1=2x3+x2+2x+1

(iv) fg(x)=f(x)g(x)=2x+1x2+1

14. Express the following functions as set of ordered pairs and determine their range.

f:xR,f(x)=x3+1,wherex={1,0,3,9,7}

Show Answer

Solution

We have,

f:XR,f(x)=x3+1

Where

X={1,0,3,9,7}

When

x=1, then f(1)=(1)3+1=1+1=0

x=0, then f(0)=(0)3+1=0+1=1

x=3, then f(3)=(3)3+1=27+1=28

x=9, then f(9)=(9)3+1=729+1=730

x=7, then f(7)=(7)3+1=343+1=344

f={(1,0),(0,1),(3,28),(9,730),(7,344)}

Range of f={0,1,28,730,344}

15. Find the values of x for which the functions f(x)=3x21 and g(x)=3+x are equal.

Show Answer

Solution

f(x)=g(x)

3x21=3+x3x2x4=03x24x+3x4=0x(3x4)+1(3x4)=0(3x4)(x+1)=0x=1,43

Long Answer Type Questions

16. Is g={(1,1),(2,3),(3,5),(4,7), } a function, justify. If this is described by the relation, g(x)=αx+β, then what values should be assigned to α and β ?

Thinking Process

First, find the two equation by substitutions different values of x and g(x).

Show Answer

Solution

We have,

g={(1,1),(2,3),(3,5),(4,7)}

Since, every element has unique image under g. So, g is a function.

Now

g(x)=αx+βg(1)=α(1)+β1=α+βg(2)=α(2)+β

 When x=1, then 

3=2α+β

On solving Eqs. (i) and (ii), we get

α=2,β=1

17. Find the domain of each of the following functions given by

(i) f(x)=11cosx

(ii) f(x)=1x+|x|

(iii) f(x)=x|x|

(iv) f(x)=x3x+3x21

(v) f(x)=3x28x

Show Answer

Solution

(i) We have, f(x)=11cosx

1cosx1
1cosx1
01cosx2

So, f(x) is defined, if 1cosx0

cosx1

x2nπnZ

Domain of f=R{2nπ:nZ}

(ii) We have,

f(x)=1x+|x|+|x|=xx=0,x<0=x+x=2x,x0

x+|x|=xx=0,x<0

Hence, f(x) is defined, if x>0.

 Domain of f=R+

(iii) We have, f(x)=x|x|

Clearly, f(x) is defined for any xR. Domain of f=R

(iv) We have,

f(x)=x3x+3x21

f(x) is not defined, if

x21=0(x1)(x+1)=0x=1,1 Domain of f=R{1,1}

(v) We have,

f(x)=3x28x

Clearly, f(x) is defined, if 28x0

x28

Domain of f=R{28}

18. Find the range of the following functions given by

(i) f(x)=32x2

(ii) f(x)=1|x2|

(iii) f(x)=|x3|

(iv) f(x)=1+3cos2x

Thinking Process

First, find the value of x in terms of y, where y=f(x). Then, find the values of y for which x attain real values.

Show Answer

Solution

(i) We have,

f(x)=32x2y=f(x)y=32x22x2=3yx2=23yx=2y3y

Let

Then,

x assums real values, if 2y30 and y>0y32

 Range of f=[32),

(ii) We know that, |x2|0 |x2|

1- |x2|1 f(x)1

Range of f=(,1)

(iii) We know that,

|x3|0f(x)0

 Range of f=[0,)

(iv) We know that,

1cos2x133cos2x3

131+3cos2x1+321+3cos2x1+32f(x)4  Range of f=[2,4]

19. Redefine the function

f(x)=|x2|+|2+x|,3x3

Thinking Process

First find the interval in which |x2| and |2+x| is defined, then find the value of f(x) in that interval.

Show Answer

Solution

Since,

 and 

Since,|x2|=(x2),x<2x2,x≥≥2And|2+x|=(2+x),x<2(2+x),x2f(x)=|x2|+|2+x|,3x3={(x2)(2+x),3x<2(x2)+2+x,2x<2x2+2+x,2x3={2x,3x<2=2x<22,2x3

20. If f(x)=x1x+1, then show that

(i) f(1x)=f(x)

(ii) f(1x)=1f(x)

Show Answer

Solution

We have, f(x)=x1x+1

(i) f(1x)=1x11x+1=(1x)/x(1+x)/x=1x1+x=(x1)x+1=f(x)

(ii) f(1x)=1x11x+1=(1x)/x(1+x)/xf(1x)=(x+1)x1

Now, 1f(x)=1x1x+1=(x+1)x1

f(1x)=1f(x)

21. If f(x)=x and g(x)=x be two functions defined in the domain R+{0}, then find the value of

(i) (f+g)(x)

(ii) (fg)(x)

(iii) (fg)(x)

(iv) fg(x)

Show Answer

Solution

We have, f(x)=x and g(x)=x be two function defined in the domain R+{0}.

(i) (f+g)(x)=f(x)+g(x)=x+x

(ii) (fg)(x)=f(x)g(x)=xx

(ii) (fg)(x)=f(x)g(x)=xx=x32

(iv) fg(x)=f(x)g(x)=xx=1x

22. Find the domain and range of the function f(x)=1x5.

Show Answer

Solution

We have, f(x)=1x5

f(x) is defined, if x5>0x>5

Domain of f=(5,)

Let

f(x)=y

y=1x5x5=1y

x5=1y2

x=1y2+5

Hence, range of f=R+x(5,)yR+

23. If f(x)=y=axbcxa, then prove that f(y)=x.

Show Answer

Solution

We have,

f(x)=y=axbcxa

f(y)=aybcya=a(axbcxa)bc(axbcxa)a=a(axb)b(cxa)c(axb)a(cxa)=a2xabbcx+abacxbcacx+a2=a2xbcxa2bc=x(a2bc)(a2bc)=xf(y)=x

Hence proved.

Objective Type Questions

24. Let n(A)=m and n(B)=n. Then, the total number of non-empty relations that can be defined from A to B is

(a) mn

(b) nm1

(c) mn1

(d) 2mn1

Thinking Process

First find the number of element in A×B and then find the number of relation by using 2m(A×B)1

Show Answer

Solution

(d) We have,

n(A)=m and n(B)=nn(A×B)=n(A)n(B)=mn

Total number of relation from A to B=2mn1=2n(A×B)11

25. If [x]25[x]+6=0, where [ ] denote the greatest integer function, then

(a) x[3,4]

(b) x(2,3]

(c) x[2,3]

(d) x[2,4)

Thinking Process

If a and b are two successive positive integer and [x]=a,b, then xa,b]

Show Answer

Solution

(c) We have,

[x]25[x]+6=0[x]23[x]2[x]+6=0([x]3)([x]2)=0[x]=2,3x[2,3]

26. Range of f(x)=112cosx is

(a) 13,1

(b) 1,13

(c) (,1]13,

(d) 13,1

Show Answer

Solution(b) We know that,

1cosx1

22cosx21212cosx1+2112cosx31112cosx131f(x)13 Range of f=1,13

27. Let f(x)=1+x2, then

(a) f(xy)=f(x)f(y)

(b) f(xy)f(x)f(y)

(c) f(xy)f(x)f(y)

(d) None of these

Show Answer

Solution

(c) We have,

f(x)=1+x2f(xy)=1+x2y2f(x)f(y)=1+x21+y2=(1+x2)(1+y2)=1+x2+y2+x2y2

1+x2y21+x2+y2+x2y2f(xy)f(x)f(y)

28. Domain of a2x2(a>0) is

(a) (a,a)

(b) [a,a]

(c) [0,a]

(d) (a,0]

Show Answer

Solution

(b) Let

f(x)=a2x2

f(x) is defined, if

a2x20

x2a20

(xa)(x+a)0

axa

Domain of f=[a,a]

29. If f(x)=ax+b, where a and b are integers, f(1)=5 and f(3)=3, then a and b are equal to

(a) a=3,b=1

(b) a=2,b=3

(c) a=0,b=2

(d) a=2,b=3

Show Answer

Solution

(b) We have,

f(x)=ax+bf(1)=a(1)+b5=a+b and,f(3)=a(3)+b3=3a+b

On solving Eqs. (i) and (ii), we get

a=2 and b=3

30. The domain of the function f defined by

f(x)=4x+1x21 is equal to 

(a) (,1)(1,4]

(b) (,1](1,4]

(c) (,1)[1,4]

(d) (,1)[1,4)

Show Answer

Solution

(a) We have,

f(x)=4x+1x21

f(x) is defined, if

4x0 or x21>0x40 or (x+1)(x1)>0x4 or x<1 and x>1

 Domain of f=(,1)(1,4]

31. The domain and range of the real function f defined by f(x)=4xx4 is given by

(a) Domain =R, Range ={1,1}

(b) Domain =R{1}, Range =R

(c) Domain =R{4}, Range ={1}

(d) Domain =R{4}, Range ={1,1}

Thinking Process

A function f(x)g(x) is defined, if g(x)0.

Show Answer

Solution

(c) We have,

f(x)=4xx4

f(x) is defined, if x40 i.e., x4

Domain of f=R{4}

Let f(x)=y

y=4xx4xy4y=4x

xy+x=4+4yx(y+1)=4(1+y)x=4(1+y)y+1

x assumes real values, if y+10 i.e., y=1.

Range of f=R{1}

32. The domain and range of real function f defined by

f(x)=x1 is given by 

Solution

Show Answer

(a) Domain =(1,), Range =(0,)

(b) Domain =[1,), Range =(0,)

(c) Domain =(1,), Range =[0,)

(d) Domain =[1,), Range =[0,)

Thinking Process

33. A function is defined f(x)=x is defined x0.

Show Answer

Solution

(d) We have,

f(x)=x1

f(x) is defined, if x10.

x1 Domain of f=[1,) Let f(x)=yy=x1y2=x1x=y2+1

34. The domain of the function f given by f(x)=x2+2x+1x2x6.

(a) R{3,2}

(b) R{3,2}

(c) R[3,2]

(d) R(3,2)

Show Answer

Solution

(a) We have,

f(x)=x2+2x+1x2x6

f(x) is defined, if x2x6=0x23x+2x6=0x(x3)+2(x3)=0(x3)(x+2)=0x=3,2 Domain of f=R{3,2}

35. The domain and range of the function f given by f(x)=2|x5| is

(a) Domain =R+, Range =(,1]

(b) Domain =R, Range =[,2]

(c) Domain =R, Range =(,2)

(d) Domain =R+, Range =(,2]

Show Answer

Solution

(b) We have,

f(x)=2|x5|

f(x) is defined for all xR

 Domain of f=R

we know that

|x5|0|x5|02|x5|2f(x)2

 Range of f=[,2]

36. The domain for which the functions defined by f(x)=3x21 and g(x)=3+x are equal to

(a) [1,43]

(b) [1,43]

(c) [1,43]

(d) [2,43]

Show Answer

Solution

(a) We have, f(x)=3x21 and g(x)=3+x

f(x)=g(x)3x21=3+x3x2x4=03x24x+3x4=0x(3x4)+1(3x4)=0(3x4)(x+1)=0x=1,43

So, domain for which f(x) and g(x) are equal to [1,43].

Fillers

37. Let f and g be two real functions given by

f={(0,1),(2,0),(3,4),(4,2),(5,1)} and g={(1,0),(2,2),(3,1),(4,4),(5,3)} then the domain of fg is given by………… 

Thinking Process

First find the domain of f and domain ofg. Then,

 domain of fg= domain of f domain of g

Show Answer

Solution

We have,

and

f={(0,1),(2,0),(3,4),(4,2),(5,1)}

g={(1,0),(2,2),(3,1),(4,4),(5,3)}

 Domain of f={0,2,3,4,5}

and Domain of g={1,2,3,4,5}

Domain of (fg)= Domain of f Domain of g={2,3,4,5}

38. Let f={(2,4),(5,6),(8,1),(10,3)}

and g={(2,5),(7,1),(8,4),(10,13),(11,5)}

be two real functions. Then, match the following.

Column I Column II
(i) fg (a) 2,45,8,14,10,313
(ii) f+g (b) {(2,20),(8,4),(10,39)}
(c) fg (c) {(2,1),(8,5),(10,16)}
(d) fg (d) {(2,9),(8,3),(10,10)}

The domain of fg,f+g,fg,fg is domain of f domain of g. Then, find their images.

Show Answer

Solution

We have,

f={(2,4),(5,6),(8,1),(10,3)} and g={(2,5),(7,1),(8,4),(10,13),(11,5)} So, fg,f+g,f.g,fg are defined in the domain (domain of f domain of g )  i.e., {2,5,8,10}{2,7,8,10,11}{2,8,10} (i) (fg)(2)=f(2)g(2)=45=1(fg)(8)=f(8)g(8)=14=5(fg)(10)=f(10)g(10)=313=16fg={(2,1),(8,5),(10,16)}(f+g)(2)=f(2)+g(2)=4+5=9(f+g)(8)=f(8)+g(8)=1+4=3(f+g)(10)=f(10)+g(10)=3+13=10f+g={(2,9),(8,3),(10,10)}

(iii) (fg)(2)=f(2)g(2)=4×5=20

(fg)(8)=f(8)g(8)=1×4=4(fg)(10)=f(10)g(10)=3×13=39fg={(2,20),(8,4),(10,39)}

(iv) fg(2)=f(2)g(2)=45

fg(8)=f(8)g(8)=14

fg(10)=f(10)g(10)=313

fg=2,45,8,14,10,313

Hence, the correct matches are (i) (c), (ii) (d), (iii) (b), (iv) (a).

True/False

39. The ordered pair (5,2) belongs to the relation

R={(x,y):y=x5,x,yZ}

Show Answer

Solution

False

We have, R={(x,y):y=x5,x,yZ}

If x=5, then y=55=0

Hence, (5, 2) does not belong to R.

40. If P={1,2}, then P×P×P={(1,1,1),(2,2,2),(1,2,2),(2,1,1)}

Show Answer

Solution

False

We have, P={1,2} and n(P)=2

n(P×P×P)=n(P)×n(P)×n(P)=2×2×2=8

But given P×P×P has 4 elements.

41. If A={1,2,3},B={3,4} and C={4,5,6}, then (A×B)(A×C) ={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3), (3,4),(3,5),(3,6)}.

Thinking Process

First, we find A×B and A×C, then we will find (A×B)(A×C).

Show Answer

Solution

True sinθcosθ We have, A={1,2,3},B={3,4} and C={4,5,6}

A×B={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}

A×C={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}

(A×B)(A×C)={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5), (3,6)}

42. If (x2,y+5)=(2,13) are two equal ordered pairs, then x=4, y=143

Show Answer

Solution

False

We have, (x2,y+5)=(2,13)

x2=2,y+5=13x=2+2,y=135x=0,y=143

43. If A×B={(a,x),(a,y),(b,x),(b,y)}, then A={a,b} and B={x,y}.

Show Answer

Solution

True

We have, A×B={(a,x),(a,y),(b,x),(b,y)}

A= Set of first element of ordered pairs in A×B={a,b}

B= Set of second element of ordered pairs in A×B={x,y}



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane