Fluid Mechanics And Properties Of Matter
Fluids, Surface Tension, Viscosity & Elasticity :
Hydraulic Press:
$$P=\frac{f}{a}=\frac{F}{A} \text { or } F=\frac{A}{a} \times f$$
Hydrostatic Paradox: $$P_{A}=P_{B}=P_{C}$$
(i) Liquid placed in elevator : When elevator accelerates upward with acceleration $a_{0}$ then pressure in the fluid, at depth ’ $h$ ’ may be given by,
$$ P=\rho h\left[g+a_{0}\right] $$
and force of buoyancy, $$B=m\left(g+a_{0}\right)$$
(ii) Free surface of liquid in horizontal acceleration :
$$\tan \theta=\frac{a_{0}}{g}$$
$$P_{1}-P_{2}=\rho v a_{0}$$
where $P_{1}$ and $P_{2}$ are pressures at points 1 and 2.
Then $$h_1-h_2=\frac{v a_0}{g}$$
(iii) Free surface of liquid in case of rotating cylinder:
$$h=\frac{v^{2}}{2 g}=\frac{\omega^{2} r^{2}}{2 g}$$
Equation of Continuity:
PYQ-2023-Mechanical-Properties-of-Fluids-Q9
$$a_{1} v_{1}=a_{2} v_{2}$$
In general, av = constant.
Bernoulli’s Theorem:
PYQ-2023-Mechanical-Properties-of-Fluids-Q4
$$\frac{P}{\rho}+\frac{1}{2} v^{2}+g h= \text{constant}$$
Torricelli’s theorem:
Speed of efflux: $$v=\sqrt{\frac{2 g h}{1-\frac{A_{2}^{2}}{A_{1}{ }^{2}}}}$$
$A_{2}=$ area of hole, ${A}_{1}=$ area of vessel.
Elasticity and Viscosity:
PYQ-2023-Mechanical-Properties-of-Solids-Q2
$$\text{Stress}=\frac{\text { restoring force }}{\text { area of the body }}=\frac{\mathrm{F}}{\mathrm{A}}$$
Strain, $$\in=\frac{\text { change in configuration }}{\text { original configuration }}$$
(i) Longitudinal strain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}$
(ii) $\epsilon_{\mathrm{v}}=$ volume strain $=\frac{\Delta \mathrm{V}}{\mathrm{V}}$
(iii) Shear Strain : $\tan \phi$ or $\phi=\frac{\mathrm{X}}{\ell}$
Young’s Modulus Of Elasticity:
PYQ-2023-Mechanical-Properties-of-Solids-Q1, PYQ-2023-Mechanical-Properties-of-Solids-Q3, PYQ-2023-Mechanical-Properties-of-Solids-Q5, PYQ-2023-Mechanical-Properties-of-Solids-Q6, PYQ-2023-Mechanical-Properties-of-Solids-Q7, PYQ-2023-Mechanical-Properties-of-Solids-Q8, PYQ-2023-Mechanical-Properties-of-Solids-Q10
$$ \mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{L} / \mathrm{L}}=\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}}$$
Potential Energy Per Unit Volume:
$$u =\frac{1}{2}(\text{stress} \times \operatorname{strain})=\frac{1}{2}\left(\mathrm{Y} \times \operatorname{strain}^{2}\right)$$
Inter-Atomic Force-Constant:
$$\mathrm{k}=\mathrm{Yr}_{0}$$
Newton’s Law of viscosity:
$$F \propto A \frac{d v}{d x} \text { or } F=-\eta A \frac{d v}{d x}$$
Stoke’s Law:
PYQ-2023-Mechanical-Properties-of-Fluids-Q5
$$F=6 \pi \eta r v $$
Terminal velocity:
PYQ-2023-Mechanical-Properties-of-Fluids-Q1
$$ v_T=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$$
Surface Tension
PYQ-2023-Mechanical-Properties-of-Fluids-Q2, PYQ-2023-Mechanical-Properties-of-Fluids-Q3, PYQ-2023-Mechanical-Properties-of-Fluids-Q6, PYQ-2023-Mechanical-Properties-of-Fluids-Q7, PYQ-2023-Mechanical-Properties-of-Fluids-Q8
$$T=\frac{\text { Total force on either of the imaginary line }(F)}{\text { Length of the line }(\ell)}$$
$$\mathrm{T}=\mathrm{S}=\frac{\Delta \mathrm{W}}{\mathrm{A}}$$
Thus, surface tension is numerically equal to surface energy or work done per unit increase surface area.
-
Inside a bubble : $$\left(p-p_{a}\right)=\frac{4 T}{r}=p_{\text {excess }} ;$$
-
Inside the drop : $$\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$$
-
Inside air bubble in a liquid : $$\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$$
-
Capillary Rise $$ h=\frac{2 T \cos \theta}{r \rho g}$$
Relations Between Elastic Constants
PYQ-2023-Mechanical-Properties-of-Solids-Q4
E = Young’s modulus of elasticity,
G = Modulus of rigidity,
K = Bulk modulus,
$\nu$ = Poisson’s ratio
-
Relationships between Young’s Modulus and Modulus of Rigidity: $$E = 2G(1 + \nu)$$
-
Relationships between Young’s Modulus and Bulk Modulus: $$E = 3K(1 - 2\nu)$$
-
Relationships between Modulus of Rigidity and Bulk Modulus: $$G = \frac{3K(1 - 2\nu)}{2(1 + \nu)}$$
-
Relationships between Poisson’s Ratio $$\nu = \frac{3K - 2G}{2(3K + G)}$$
-
Relation involving all three moduli: $$E = 9KG / (3K + G)$$
Bulk Modulus
PYQ-2023-Mechanical-Properties-of-Solids-Q9
$$B=-P/(\Delta V / V)$$
Compressibility
$$k=(1 / B)=-(1 / \Delta P) \times(\Delta V / V)$$