Circular Motion

Average Angular Velocity:

$$\omega_{av} = \frac{\Delta \theta}{\Delta t}$$

Instantaneous Angular Velocity:

$$\omega = \frac{d\theta}{dt}$$

Average angular acceleration: $$\alpha_{av} = \frac{\Delta \omega}{\Delta t}$$

Instantaneous Angular Acceleration:

$$\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$$

Relation Between Speed And Angular Velocity:

$$v = r\omega$$

and $$\vec{v} = \vec{\omega} \times \vec{r}$$

Tangential Acceleration (Rate Of Change Of Speed):

$$a_t = r \frac{d\omega}{dt} = \omega \frac{dr}{dt}$$

Radial Or Normal Or Centripetal Acceleration:

PYQ-2023-Rotational-Motion-Q9

$$a_r = \frac{v^2}{r} = \omega^2 r$$

Total Acceleration:

$$\vec{a} = \vec{a}_t + \vec{a}_r \Rightarrow a = \sqrt{a_t^2 + a_r^2}$$

Angular Acceleration:

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt} \quad \text{(Non-uniform circular motion)}$$

Radius Of Curvature:

$$R = \frac{v^2}{a_{\perp}} = \frac{mv^2}{F_{\perp}}$$

Normal Reaction Of Road On A Concave Bridge:

$$N=m g \cos \theta+\frac{m v^2}{r}$$

Normal Reaction On A Convex Bridge:

$$N=m g \cos \theta-\frac{m v^2}{r}$$

Skidding Of Vehicle On A Level Road:

$$v_{\text{safe}} \leq \sqrt{\mu gr}$$

Skidding Of An Object On A Rotating Platform:

$$\omega_{\max} = \sqrt{\frac{\mu g}{r}}$$

Bending Of Cyclist:

$$\tan \theta = \frac{v^2}{rg}$$

Banking Of Road Without Friction:

PYQ-2023-Rotational-Motion-Q3

$$\tan \theta = \frac{v^2}{rg}$$

Banking Of Road With Friction:

$$\frac{v^2}{rg} = \frac{\mu + \tan \theta}{1 - \mu \tan \theta}$$

Maximum And Minimum Safe Speed On A Banked Frictional Road:

$$V_{\max} = \left[\frac{rg(\mu + \tan \theta)}{(1 -\mu \tan \theta)}\right]^{1/2}$$

$$V_{\min} = \left[\frac{rg(\tan \theta -\mu)}{(1 + \mu \tan \theta)}\right]^{1/2}$$

Centrifugal Force (Pseudo Force):

$$f = m\omega^2 r$$

It acts outwards when the particle itself is taken as a frame.

Effect Of Earth’s Rotation On Apparent Weight:

$$N = mg - mR\omega^2 \cos^2 \theta,$$

where $\theta$ is the latitude at a place.

Vertical Circle:

Various quantities for a critical condition in a vertical loop at different positions.

alt text

Conical pendulum:

PYQ-2023-Gravitation-Q4

$$T \cos \theta = mg$$

$$T \sin \theta = m\omega^2 r$$

Time period: $$T = \sqrt{\frac{2\pi L \cos \theta}{g}}$$

Relations among angular variables:

alt text

Initial angular velocity: $\omega_0$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2 \alpha \theta$$