Gaseous State
Temperature Scale:
$ \frac{C-O}{100-0}=\frac{K-273}{373-273}=\frac{F-32}{212-32}$ = $\frac{R-R(O)}{R(100)-R(O)} $
where R= Temp. on unknown scale.
Boyle’s law and measurement of pressure:
At constant temperature, $\mathrm{V}$ $\propto$ $\frac{1}{\mathrm{P}}$
$ \quad\quad \quad \quad \quad \quad \quad \quad \quad P_1 V_1 = P_2 V_2$
Charles law :
At constant pressure, $\quad V \alpha T \quad $ or $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
Gay-Lussac’s law:
At constant volume,
$\mathrm{P}$ $\propto$ $\mathrm{T} \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \rightarrow$ temp on absolute scale
Ideal gas Equation:
$$ P V=n R T $$
$$ P V=\frac{w}{m} R T \text { or } P=\frac{d}{m} R T \text { or } P m=d R T $$
Daltons law of partial pressure:
$\quad P_{1}=\frac{n_{1} R T}{v}, \quad P_{2}=\frac{n_{2} R T}{v}, \quad P_{3}=\frac{n_{3} R T}{v}$ and so on.
$\quad $ Total pressure = $ P_1 + P_2 + P_3….$
$\quad $ Partial pressure $=$ mole fraction $X$ Total pressure.
Amagat’s law of partial volume:
$$ V=V_{1}+V_{2}+V_{3}+\ldots \ldots $$
Average molecular mass of gaseous mixture:
$$ M_{\text {mix }}=\frac{\text { Total mass of mixture }}{\text { Total no. of moles in mixture }} =\frac{n_{1} M_{1}+n_{2} M_{2}+n_{3} M_{3}}{n_{1}+n_{2}+n_{3}}$$
Graham’s Law
Rate of diffusion $r \propto \frac{1}{\sqrt{d}} ; \quad d=$ density of gas
$$ \frac{r_{1}}{r_{2}}=\frac{\sqrt{d_{2}}}{\sqrt{d_{1}}}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}=\sqrt{\frac{V \cdot D_{2}}{V \cdot D_{1}}} $$
Kinetic Theory of Gases
$\mathrm{PV}=\frac{1}{3} \mathrm{mN} \overline{\mathrm{U}^{2}} \quad \text{Kinetic equation of gases}$
Average K.E. for one mole $=N_{A}\left(\frac{1}{2} m \overline{U^{2}}\right)=\frac{3}{2} K N_{A} T=\frac{3}{2} R T$
Root mean square speed
$U_{r m s}=\sqrt{\frac{3 R T}{M}} \quad$ molar mass must be in $\mathrm{kg} / \mathrm{mole}$
Average speed
$ U_{av} = U_{1}+U_{2}+U_{3}+ \ldots \ldots \mathrm{U}_{\mathrm{N}}$
$U_{\text {avg. }}=\sqrt{\frac{8 R T}{\pi M}}=\sqrt{\frac{8 K T}{\pi m}} \quad K$ is Boltzmann constant
Most probable speed
$U_{MPS } =\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 K T}{m}}$
Van der Waal’s equation :
$ \left(P+\frac{a n^{2}}{v^{2}}\right)(v-n b)=n R T $
Critical constants:
$\mathrm{V}_{\mathrm{c}}=3 \mathrm{~b}$,
$\mathrm{P}_{\mathrm{c}}=\frac{\mathrm{a}}{27 \mathrm{~b}^{2}}$,
$\mathrm{~T}_{\mathrm{C}}=\frac{8 \mathrm{a}}{27 \mathrm{Rb}}$