हलचल का क्षण

जब बात गतिलता बल में भार के साथ भौतिकी समस्याओं से संबंधित भौतिकी के अंदर पलटति गति में आता है, तो संबंधित बातमी जब पूछी जाती है। इसे आधिकारिक रूप से कोणिकीय गति की गणना के लिए प्राथमिकतापूर्वक उपयोग किया जाता है। इस विषय पर आगे की पठनीयता हम और गहराई से जानेंगे.

मोमेंट ऑफ इंटरशिया क्या है?

मोमेंट ऑफ इंटरशिया (मुख्य रूप से कोणीय भार या पलटी हुई जित्ती) एक मात्रा है जो बॉडी कीकोणीय त्वरण के प्रतिरोध को व्यक्त करती है। इसे परिक्रमा के धुरीण धाईक्षेप के चौकों की गुणांकि और इसकी क्षेत्र के संघनन से गणना की जाती है। सरल शब्दों में, यह एक नदी की एक वैशिष्ट्य रूप में परिक्रमा धुरी हेतु आवश्यक टॉर्क की मात्रा होती है। मोमेंट ऑफ इंटरशिया की अंतर्राष्ट्रीय इकाई kgमी<एम्ट्रियनy<स्वप>2<स्वप> है।

मोमेंट ऑफ इंटरशिया (एमओआई) सामान्य रूप में एक चुने गए परिक्रमा के अक्ष के संबंध में निर्धारित होता है। इसमें परिक्रमा के चौकों के विन्यास और मोमेंट ऑफ इंटरशिया का चयन करने पर निर्भरता होती है।

सामग्री की सूची

मोमेंट ऑफ इंटरशिया सूत्र {#फार्मूला}

सामान्य रूप में, मोमेंट ऑफ इंटरशिया I = m × r<एमं>2<स्वप></स्वप>kी सावंत रूप में व्यक्त किया जाता है।

जहाँ,

m=Σm×v

r = पलटी हुई धुरी से दूरी।

धारणात्मक रूप में: I=0Mr2 dm

⇒ मोमेंट ऑफ इंटरशिया की आयामी सूत्र है, M<स्वप>1<स्वप>L<स्वप>2<स्वप>कारत।

एक पारगमन तत्वों के एक प्रणाली की क्षिप्रवाति का संकेत किया जाता है

I=miri2 [समीकरण (1) से]

धनुष इलेमेंट से ध्यान दिया गया लब्धक का लब्धज दूरी ri के द्वारा तत्व के अक्ष से सीधा दूरी संकेतित की जाती है।

![एक पारगमन तत्वों का संवेदनशीलता का क्षण] ()

उदाहरण:

![क्षणमान उदाहरण पर] ()

कठिन वस्तुओं का क्षणमान व संवेदनशीलता

![कठिन वस्तुओं का क्षणमान व संवेदनशीलता] ()

सतत भार संवितरण का क्षणमान निकालने हेतु बिन्दुमान्य का योगान्तरण का उपयोग किया जा सकता है। यदि हम प्रणाली को एक अत्यन्त क्षुमशिल तत्व में विभाजित करें जिसका भारीय तत्व dm और प्रणाष्म में घुमाव अक्ष से दूरी को x संकेतित करता है, तो क्षणमान है:

I = ∫r2dm (3)

क्षणमान की गणना

एक चरण-द्वारा-चरण गाइड मौलिक क्षणमान के लिए दिया गया है:

सतर्क तंबू का क्षणमान एक अपरस्पारित द्वारा

![एक एक तंबा का क्षणमान जहां पर यह क्षणमान] ()

![क्षणमान का गणना] ()

L लंबाई वाले एक सतर्क तंबे को समझें, और उसे शून्य परिधि वाले AB के चौरस्सय के क्षणमान की गणना की आवश्यकता होती है।

सोचें की चरण तत्व ‘x’ से ‘x + dx’ तक शून्य परिधि से अलग होता है जो कि मूल से 0 है।

क्योंकि तंबा समान, लीनीय भारतीय घनत्व सर्वदा स्थिर रहेगा।

मूल मास घनत्व M/L = dm/dx

dMdx=ML

dm का क्षणमान

dI = dm x 2

dI=MLx2dx

I=L2L/2L/2dI=ML×L2L/2L/2x2dx

ध्यान दें की इलेमेंट पूरी तंबे को आवरित करता है, क्योंकि एक्स -L/2 से L/2 तक बदलता है, जहां x = -L/2 तंबे का बायाँ सिरा है।

I=ML×[x33+L2L2]

I=ML212

इसलिए, एक व्यावस्थित रॉड का क्षणमान एक अपरस्पारित चौरस्सय के लिए (I)=ML212.

एक वृत्ताकृति द्वारा उसके अक्ष का क्षणमान

![एक वृत्ताकृति द्वारा उसके अक्ष का क्षणमान] ()

एक वृत्ताकृति के रेखा उसके केंद्र के लिए खापेदार रूप में विचारा जाता है, और इसकी त्रिज्या को R और मास को M संकेतित किया जाता है। सभी तत्व घुमावी के अवधी से R की दूरी पर स्थित होते हैं।

लीनीय भारतीय घनत्व स्थिर रहती है।

M/(2π) = (dm)/(dθ)

dm=M2π×dθ

I=R2dm=R202πM2πdθ

सीमा: θ = 0 से 2π (समावेशी)

कंटेंट की हाई संस्करण: I=[R2M/(2π)](θ/2π)0

इसलिए, एक गोलियाई रिंग की अपने धुरावक के लिए संबंधीय घुमावण क्षण (I) = M R2

ध्यान दें कि एक-आयामी शरीरों में, यदि वे समानांतर हैं, तो उनका रैखिक भार घनत्व (M/L) स्थिर रहता है। इसी तरह, दो-आयामी और तीन-आयामी शरीरों के लिए, पृष्ठीय घनत्व (M/A) और आयतीय घनत्व (M/V) यथापूर्व रूप से स्थिर रहती हैं।

एक कोने के धुरावक की घुमावण क्षण

कोने के धुरावक की घुमावण क्षण

कुंटल चुना जा सकता है धुरावक एबी के बीच के बीच x और x + dx के बीच मास तत्व।

प्लेट संगठनिक होने के कारण, वृहदक प्रतिरोध (M/A) स्थिर होता है।

M/A = dm/da

M/(lxb) = dm/dx * b

dm = (M/lb) × b × dx = (M/l) dx

I=x2,dm=Ml×l2l2l2x2,dx

सीमाएं: आयामी चौकोर प्लेट की बाईं ओर x = -l/2 पर है, और प्लेट x = -l/2 से x = +l/2 तक ढक है।

I=Ml[x33l2+l2]=Ml212

इसलिए, एक कोने के धुरावक की घुमावण क्षण (I)=Ml212.

ध्यान: यदि मास तत्व चौड़ाई के पारलेल चुना गया होता है, तो घुमावण क्षण होगा, I=Mb212

संगठित गोल चालक के प्रतिधारण का घुमावण क्षण

संगठित गोल चालक के प्रतिधारण

प्लेट की भार M और तट R हों। केंद्र O पर है और धुरा तस्वीर के सतह के लिए लंब है। धुरावक मास हर x और x+dx के बीच होने वाले मोटी छलका है जिसका मोटापा dx और मास dm होता है।

तस्वीर का पृष्ठीय मास घनत्व स्थिर होता है क्योंकि वह समानांतर है।

M/A = dm/da

M/(πR^2) = dm/(2πx∙dx)

I=x2,dm=2MR2×0Rx3dx

सीमाएं: x=0 से x=R तक सभी मास तत्व के क्षेत्र लेने से पूरी प्लेट को कवर करता है।

I = MR2/2

इसलिए, एक संगठित गोल चालक के प्रतिधारण की घुमावण क्षण (I)=MR22

एक पतली गोल परिधित कवक या संगठनिक खोखला गोला का व्यासांतर प्रतिधारण

पतली गोल परिधित कवक मार्ग

गोल का भार M और त्रिज्या R हों, विचार के केंद्र में हों और ओय निर्धारित धुरा हों। मास सतह पर फैला होता है और अंदर खोखला होता है।

लेट अस कंसदर थे रेड़ी अव अ स्फीर अत अंग्ले θ अंद अत अंग्ले θ + दθ विथ थे अक्सिस ओवय, अंद ताके अन एलेमेंट (थिन रिंग) ओफ मास दμ विथ रेड़ी Rसिनθ अस वे रोटेते थेसे रेड़ी अबौत ओवय. थे विद्थ ओफ थिस रिंग इस RDθ अंद इत्स परिफेर्य इस 2πRसिनθ.

थे सुरफेस मास डेंसिती (M/A) ओफ थे होल्लोव स्फीर इस कन्स्तन्त, द्यू तो इत्स युनिफॉर्मित्य.

M/A=dmda

M4πR2=dm2πRsinθRdθ

[M/2]sinθdθ=[M/4πR^2]2πR^2.sinθdθ

I = ∫x² dm = ∫₀^π (Rsinθ)² [M/2]sinθ dθ

अस θ इन्क्रीसेस फ्रम ० तो π, थे एलेमेंटल रिंग्स कंप्लीटेली कवेर थे स्फीरिकल सर्फेस.

I = (MR²/2) × 0 ∫₀^π sin³θ dθ = (MR²/2) × 0 ∫₀^π [sin²θ × sinθ] dθ

∫₀^π (1 - cos²θ) sinθ dθ

नोव, बय इंटेग्रेटिंग थे अबोवे इक्वेशन उसिंग थे सबस्टिटुशन मेथड, वे गेत,

u = -sinθ dθ

थेन, du = -sinθ dθ

व्हेन θ = ०, चंगिंग थे लिमित्स रिसल्ट्स इन u = १

व्हेन, θ = π, u = -1

I = (M R²/2) × ∫₋₁¹ (1 - u²) du

कंटेंट का हिंदी संस्करण क्या होगा: =MR22×11(u21)du

[MR2/2]×[u3/3u]11

[MR2/2]×[4/3]=[2MR2/3]

अतः, पतली गोल छाली और समान खोखली गोला (I) का क्षणशक्ति 2MR2/3 के बराबर होता है।

एक समान घन के क्षणशक्ति

हम एक त्रिज्या R और मास M वाले गोले को मान लेते हैं। एक त्रिज्या x, मास dm और मोटाई dx वाली पतली गोल छाली को मास तत्व के रूप में लिया जाता है। द्रव्यमानत्व (M/V) स्थिर रहता है क्योंकि समान घन वाला गोला होता है।

M/V = dm/dV

[4/3×πR3]=[4πx2.dx]

M/(4/3πR3)×4πx2dx=[3M/R3]×2dx

कंटेंट का हिन्दी संस्करण है: I=dI=23×dmx2

2/3×[3M/R3dx]x4

2MR3×0R4x4dx

जब x 0 से R तक बढ़ता है, तत्वीय खोल और संग्रह को समुद्री सतह को आवृत करती है।

I=2MR3[x55]R0

(2M/3) × (5R/5)

इस प्रकार, संगत ठोस गोला का गतिमान संलय मोमेंट (I)=2MR25.

विभिन्न वस्तुओं के लिए गतिमान संलय की गणना

विभिन्न वस्तुओं के लिए गतिमान संलयत।

जैसा कि हम ऊपर दिए गए तालिका में देख सकते हैं, गतिमान संलय आक्षेक की अवधारणा पर निर्भर करता है। अब तक, हमने इसकी गणना की है जब धुरी का आक्षेक उनके संगत केंद्र में से गुजरती है (Icm)। हम यदि हम दो भिन्न धुरियों का आक्षेक चुनेंगे, तो हमें ध्यान देगेंगे कि वस्तु धारणा वर्तमानीता के अनुसार गतिमान संलय को विरोधी है। किसी भी दिए गए धुरी के माध्यम से गतिमान संलय को ढूंढने के लिए, निम्नलिखित सिद्धांतों का उपयोगी होगा।

समानातिरेकी धुरी का सिद्धांत

लंबवता धुरी का सिद्धांत

समानातिरेकी धुरी का सिद्धांत

एक वस्तु का गतिमान संलय जब किसी भी धुरी में उसके संगत तल से जाता है, तो वह उस दिशा में एक न्यूनतम गतिमान संलय होता है। संगततल के उसी धुरी में समानातिरेकी धुरी के बारे में गतिमान संलय निम्नलिखित है,

समानातिरेकी धुरी और गतिमान संलय

I=Icm+Md2

जहां, d दो धुरियों के बीच की दूरी है।

गतिमान संलय उदाहरण 1

घुमाव के त्रिज्या

यदि एक बहुत कम शरीर (m) के बारे में एक धुरी पर गतिमान संलय (I) निम्न रूप में लिखा जा सकता है:

I=Mk2

वहां से घुमाव के त्रिज्या, k के रूप में दिए जानें वाले धुरी से दूरी है, जिसके कारण शरीर का पूरा मास एक संकलित मान माना जा सकता है, जिससे इसका परिवर्तनात्मक संलय बरकरार रहता है।

घुमाव के त्रिज्या, एक ठोस गोले के आक्षेक में है:

k=[2/5]×R

हल किया हुआ उदाहरण

1. बकी डिस्क के चक्रधुर प्याले और डिस्क के केंद्र से होने वाले धुर्ववेग का षब्दलेन किया जा सकता है जो सूत्र I=12MR2 का प्रयोग करके किया जा सकता है, जहां M डिस्क का भार और R डिस्क का त्रिज्या है।

रुझान का षब्दलेन समस्या

समाधान:

लोप हुए भाग के द्वारा षधस्थित त्रिज्या के एक धुर्ववेग = Icm+md2

[m×(R/3)2]/2+m×[4R2/9]=mR2/2

इसलिए, शेष भाग का षधक एकसन (Iशेष) = पूर्ण डिस्क का षधक - हटाए गए भाग का षधक

9mR2/2mR2/2=8mR2/2

इसलिए, शेष भाग का षधक (Iशेष) = 4mR2

2. एबी के बारे में एक रॉड द्वारा जुड़े 700 ग्राम्स और 500 ग्राम्स के दो गेंदों के प्रणली का षधक क्या है?

रुझान का षधलेन समस्या

दिया गया

प्रदीया गया

घुमाव का धिरेंय नियामक एबी है

mX = 700 ग्राम = 0.7 किलोग्राम

mY = 500 ग्राम = 0.5 किलोग्राम

rX = 10 सेमी = 0.1 मीटर

rY = 40 सेमी = 0.4 मीटर

समाधान:

I = mX rX2 + mY rY2

I = (0.7)× (0.1)2 + (0.5)× (0.4)2

I = (0.7) x (0.01) + (0.5) x (0.16)

I = 0.007 + o.08

I = 0.087 किलोग्राम मीटर2

प्रणली का षधक 0.087 किलोग्राम मीटर2 है।

3. जैसा नीचे दिखाया गया है, रॉड द्वारा जुड़े दो गेंदों का षधक क्या है (रॉड का भार नजरअंदाज करें)?

रुझान का षधलेन समाधान

दिया गया:

mX = 0.3 किलोग्राम = 300 ग्राम

mY = 0.5 किलोग्राम = 500 ग्राम

rX = 0 मीटर

rY = 0.3 मीटर

समाधान:

I = mXr2 + mYr2

कंटेंट का हिंदी संस्करण क्या होगा: I = 0.09 + 0.045

I = 0 + 0.045

I = 0.045 किग्रा मीटर2

सिस्टम का प्रतिष्ठान क्षण 0.045 किग्रा मीटर2 है।

4. प्रतीक्षारेखा का प्रतिष्ठान क्षण दो 200 ग्राम वालों का होगा (रस्सी के भार को अनदेखा किया)?

मात्रण मान निर्धारित उदाहरण

दिया गया

गेंद का भार = m1 = m2 = m3 = m4 = 200 ग्राम = 0.2 किलोग्राम

गेंद और प्रतीक्षारेखा के बीच की दूरी (r1) = 40 सेमी = 0.4 मीटर

गेंद 2 और प्रतीक्षारेखा के बीच की दूरी (r2) = 40 सेमी = 0.4 मीटर

गेंद 3 और प्रतीक्षारेखा के बीच की दूरी (r2) = 40 सेमी = 0.4 मीटर

गेंद 4 और प्रतीक्षारेखा के बीच की दूरी (r2) = 40 सेमी = 0.4 मीटर

समाधान:

I = m1r21 + m2r22 + m3r23 + m4r24

I = 0.2 × (0.4)2 + 0.2 × (0.4)2 + 0.2 × (0.4)2 + 0.2 × (0.4)2

I = 0.128

I = 0.128 किलोग्राम मीटर2

गेंदों का प्रतीक्षारेखा का प्रतिष्ठान क्षण: 0.128 किलोग्राम मीटर2

मात्रण मान के संबंध में अक्सर पूछे जाने वाले प्रश्न

क्या एक धार्मिक शरीर का प्रतिष्ठान क्षण संचालन की गति के साथ बदलता है?

एक धार्मिक शरीर का प्रतिष्ठान क्षण केवल संचालन की धारा के चारों ओर भार के वितरण पर निर्भर करता है और यह संचालन की गति के साथ स्वतंत्र होता है। इसलिए, एक धार्मिक शरीर का प्रतिष्ठान क्षण संचालन की गति के साथ नहीं बदलता है।

किस आकार का प्रतिष्ठान क्षण अधिक होगा: एक डिस्क या एक होलो और पतला सिलिंडर जो एक ही त्रिज्या वाला हो?

होलो सिलिंडर का प्रतिष्ठान क्षण एक डिस्क की तुलना में अधिक होगा क्योंकि इसका भार चारों ओर की धारा से अधिक दूर होता है।

प्रतिष्ठान क्षण एक सकल मात्रा है।

प्रतिष्ठान क्षण एक सकल मात्रा होता है।

एक ठोस गोल गोला का प्रतिष्ठान क्षण उसके संचालन की धारा के चारों ओर क्या होगा?

I=()MR2



विषयसूची