A determinant is defined as a quantity which is obtained by adding the products of all elements in a square matrix. To find the determinant, a particular rule is followed. In this lesson, the concept of determinants is explained in detail along with solved examples, formulas, determinant types, and practice questions.
The standard results of a few types of determinants can be found below, which will help to solve questions more efficiently. There are certain standard determinants whose results are given by direct formulas.
All Topics in Determinants
System of Linear Equations using Determinants
Differentiation and Integration of Determinants
Standard Determinants
Expressions for Standard Determinants
-
-
(\left|
\right|=\left| \right|=\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( ab+bc+ca \right))
3. $$\left| \begin{matrix} a & bc & abc \\ b & ca & abc \\ c & ab & abc \\ \end{matrix} \right|=\left| \begin{matrix} a & {{a}^{2}} & {{a}^{3}} \\ b & {{b}^{2}} & {{b}^{3}} \\ c & {{c}^{2}} & {{c}^{3}} \\ \end{matrix} \right|=abc\left( a-b \right)\left( b-c \right)\left( c-a \right);$$
5.
The determinant of order 3 × 3 is:
- In the determinant D = (
), the minor of is denoted as ( ) and so on.
Cofactor of an element:
SARRUS Diagram for Evaluating the Determinant
If
A Sarrus Diagram of order 3 is obtained by adjoining the first two columns on the right and draw dark and dotted lines as shown in the below diagram, which is a matrix.
The value of the determinant is
RECOMMENDED VIDEO
Solved Problems on Determinant
Illustration 1: Evaluate the determinant
Where
Given:
This is a heading
Solution:
This is a heading
Taking the common factor
We get
(
(\Delta=r\left|
Illustration 2: Let
Given:
This is a heading
Solution:
This is a heading
By utilizing the properties of invariance and scalar multiple to the given determinant, we can obtain the desired result.
(
(
(
(
(-\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab \right)=-\frac{1}{2}\left( a+b+c \right)\left( 2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}-2bc-2ca-2ab \right))
(-\frac{1}{2}\left( a+b+c \right)\left[ {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2\left( ab+bc+ac \right) \right])
(\begin{array}{l}=-\frac{1}{2}\left( a+b+c \right)\left[ {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right] \ \hspace{2cm} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \
a + b + c > 0
(a - b)2 + (b - c)2 + (c - a)2 > 0 ….(ii)
From (i) and (ii), Δ < 0.
Illustration 3: Show that (\Delta = \left|
(
Given:
This is a heading
Solution:
This is a heading
By using the switching and invariance properties of (
We can write
(Note that A + B + C = 0).
Using C2 - C1 → C2, and C1 - C1 → C3, we get;
(
(
Since, (
Where (
Using R2 - R1 and R3 - R1, we get;
(
sin (C - A) - sin B = sin (C - A) + sin (C + A) = 2 sin C cos A
and
sin (B - A) - sin C = 2 sin B cos A
Therefore,
Applying R2 → R2 - sin C R1 and R3 → R3 - sin B R1, we get;
(
\(\begin{array}{l}4\sin^2 A - 2\sin^2 B - 2\sin^2 C - 4\cos A \sin B \sin C\end{array}\)
(
But A + B + C = 0 implies; (
Hence, (
Illustration 4: Show that the determinant vanishes if any two of x, y, z are equal.
Given:
This is a heading
Solution:
This is a heading
Taking the common terms
Here,
(
(\Delta =-\cos x\cos y\cos z\left|
(
(
(
(\frac{1}{2}\sin \left( x-y \right)\sin \left( y-z \right)\sin \left( y+2x \right) = \frac{1}{2}\sin \left( x-y \right)\sin \left( y-z \right)2\cos \left( x+y+z \right)\sin \left( z-x \right))
(
Clearly,
Therefore, it is proven.
Video Lessons
Matrices and Determinants: Important Topics
Important Questions for JEE on Matrices and Determinants
Top 10 Most Important and Expected JEE Main Questions on Matrices and Determinants
Frequently Asked Questions
When 2 rows or columns of a determinant are interchanged, the value of the determinant is multiplied by -1.
When 2 rows or columns are interchanged, the sign of the determinant is reversed.
If all the elements of a row or column in a matrix are zero, then the determinant of the matrix is equal to zero.
If all elements of a row or column are zero, then the determinant is equal to zero.
What are Determinants Used For?
Determinants are used to provide formulas for the area or volume of certain geometric figures and also to calculate the inverse of a matrix.
No, determinants are not always positive.
No, determinants can be positive, negative, or zero.