A determinant is defined as a quantity which is obtained by adding the products of all elements in a square matrix. To find the determinant, a particular rule is followed. In this lesson, the concept of determinants is explained in detail along with solved examples, formulas, determinant types, and practice questions.

The standard results of a few types of determinants can be found below, which will help to solve questions more efficiently. There are certain standard determinants whose results are given by direct formulas.

All Topics in Determinants

Introduction to Determinants

Minors and Cofactors

Properties of Determinants

System of Linear Equations using Determinants

Differentiation and Integration of Determinants

Standard Determinants

Expressions for Standard Determinants

  1. |1aa2 1bb2 1cc2 |=(ab)(bc)(ca)

  2. (\left| abc a2b2c2 bccaab  \right|=\left| 111 a2b2c2 a3b3c3  \right|=\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( ab+bc+ca \right))

3. $$\left| \begin{matrix} a & bc & abc \\ b & ca & abc \\ c & ab & abc \\ \end{matrix} \right|=\left| \begin{matrix} a & {{a}^{2}} & {{a}^{3}} \\ b & {{b}^{2}} & {{b}^{3}} \\ c & {{c}^{2}} & {{c}^{3}} \\ \end{matrix} \right|=abc\left( a-b \right)\left( b-c \right)\left( c-a \right);$$

  1. |111 abc a3b3c3 |=(ab)(bc)(ca)(a+b+c)

5. |abc bca cab |=a3b3c3+3abc

The determinant of order 3 × 3 is:

=|a1b1c1 a2b2c2 a3b3c3 |=a1|b2c2 b3c3 |b1|a2c2 a3c3 |+c1|a2b2 b3b3 |

  1. In the determinant D = (|a11a12a13 a21a22a23 a31a32a33 |, ), the minor of a12 is denoted as (M12=|a21a23 a31a33 | ) and so on.

Cofactor of an element: Ci,j=(1)i+jMi,j

SARRUS Diagram for Evaluating the Determinant

If [a11a12a13 a21a22a23 a31a32a33]

A Sarrus Diagram of order 3 is obtained by adjoining the first two columns on the right and draw dark and dotted lines as shown in the below diagram, which is a matrix.

The value of the determinant is (a11a22a33+a12a23a31+a13a21a32)(a13a22a31+a11a23a32+a12a21a33).

Solving Determinants

Solved Problems on Determinant

Illustration 1: Evaluate the determinant |p+q2rr qr+2pr2r q+prqrr |

Where p, q, and r are positive real numbers.

Given:

This is a heading

Solution:

This is a heading

Taking the common factor r from C2 and C3 of the given determinant using the scalar multiple property, and then expanding it using the invariance property, we can evaluate the given problem.

We get Δ=r|p+q21 qr+2pr2 q+prqr |

(Subtracting qC2 and pC3 from C1, we get; )

(\Delta=r\left| q21 0r2 0qr  \right| = -r\sqrt{q}\left(r - \sqrt{2q}\right))

Illustration 2: Let a,b,c be positive and not equal. Show that the value of the determinant |abc bca cab | is negative.

Given:

This is a heading

Solution:

This is a heading

By utilizing the properties of invariance and scalar multiple to the given determinant, we can obtain the desired result.

(D=|a+b+cbc a+b+cca a+b+cab |;;;[C1C1+C2+C3] )

(=(a+b+c)|a+b+cbc a+b+cca a+b+cab | )

(=(a+b+c)|1bc 00a2c 0abbc |;;[R2R2R1,,,R3R3R1] )

(=(a+b+c)[bc+ca+aba2b2c2])

(-\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-bc-ca-ab \right)=-\frac{1}{2}\left( a+b+c \right)\left( 2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}-2bc-2ca-2ab \right))

(-\frac{1}{2}\left( a+b+c \right)\left[ {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2\left( ab+bc+ac \right) \right])

(\begin{array}{l}=-\frac{1}{2}\left( a+b+c \right)\left[ {{\left( a-b \right)}^{2}}+{{\left( b-c \right)}^{2}}+{{\left( c-a \right)}^{2}} \right] \ \hspace{2cm} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \

a + b + c > 0

(a - b)2 + (b - c)2 + (c - a)2 > 0 ….(ii)

From (i) and (ii), Δ < 0.

Illustration 3: Show that (\Delta = \left| 1cos2(αβ)cos2(αγ) cos2(βα)1cos2(βγ) cos2(γα)cos2(γβ)1 \right| )

(2sin2(βγ)sin2(γα)sin2(αβ))

Given:

This is a heading

Solution:

This is a heading

By using the switching and invariance properties of (βγ=A,γα=B,αβ=C ), we can prove the problem.

We can write Δ as, Δ=|1cos2Ccos2B cos2C1cos2A cos2Bcos2A1 |

(Note that A + B + C = 0).

Using C2 - C1 → C2, and C1 - C1 → C3, we get;

(Δ=|1sin2Csin2B cos2Csin2CsinBsin(CA) cos2BsinCsin(BA)sin2B | )

(|1sin2Csin2B cos2Csin2CsinBsin(A) cos2BsinCsin(BA)sin2B |)

Since, ([,cos2Acos2B=sin(A+B)sin(BA),A+B=C,C+A=B];;;=sinCsinB[Δ1] )

Where (Δ1=|1sin2CsinB 02sin2Csin(CA)sinB 0sin(BA)sinBsinB | ) Using R2R2R1;and;R3R3R1

Using R2 - R1 and R3 - R1, we get;

(|1sinCsinB sin2C2sin2Csin(CA)sinB sin2Bsin(BA)sinC2sin2B |)

sin (C - A) - sin B = sin (C - A) + sin (C + A) = 2 sin C cos A
and
sin (B - A) - sin C = 2 sin B cos A

Therefore, Δ1=sinCsinBΔ2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Δ2=|1sinCsinB sinC22cosA sinB2cosA2 |

Applying R2 → R2 - sin C R1 and R3 → R3 - sin B R1, we get;

Δ2=|1sinCsinB 02sin2C2cosAsinBsinC 02cosAsinBsinC2sin2B |=(2sin2B)(2sinC)(2cosA+sinBsinC)2

(Missing \left or extra \right)

\(\begin{array}{l}4\sin^2 A - 2\sin^2 B - 2\sin^2 C - 4\cos A \sin B \sin C\end{array}\)

(=2sin2A2[sin2B+sin2C2sinAcosA+2cosAsinBsinC] )

But A + B + C = 0 implies; (sin2A+sin2B+sin2C=2cosAsinBsinC )

Hence, (D=sinCsinBΔ1=sinCsinB2sin2A )

2sin2A;sin2B;sin2C=2sin2(αβ);sin2(βγ);sin2(γα).

Illustration 4: Show that the determinant vanishes if any two of x, y, z are equal.

Δ=|sinxsinysinz cosxcosycosz cos3xcos3ycos3z |

Given:

This is a heading

Solution:

This is a heading

Taking the common terms cosx, cosy, and cosz from the first, second, and third column respectively using scalar multiplication and then using the invariance property, we can prove the given statement.

Here, Δ=|cosxcosycosztanxtanytanz 1111 cos2xcos2ycos2z1 |

(=cosxcosycosz|tanxtanytanxtanztany 100 cos2xcos2ycos2xcos2zcos2y |(C3C3C2,C2C2C1) )

(\Delta =-\cos x\cos y\cos z\left| tanytanxtanztany cos2ycos2xcos2zcos2y  \right|) when expanded along R2

(=cosxcosycosz|sin(yx)cosxcosysin(zy)cosycosz sin2xsin2ysin2ysin2z |\=|coszsin(xy)cosxsin(yz) sin(x+y)sin(xy)sin(y+z)sin(yz) |.(i))

(=sin(xy)sin(yz)|coszcosx sin(x+y)sin(y+z) | =sin(xy)sin(yz)[sin(y+z)coszsin(x+y)cosx])

(Missing or unrecognized delimiter for \left)

(\frac{1}{2}\sin \left( x-y \right)\sin \left( y-z \right)\sin \left( y+2x \right) = \frac{1}{2}\sin \left( x-y \right)\sin \left( y-z \right)2\cos \left( x+y+z \right)\sin \left( z-x \right))

(=cos(x+y+z)sin(xy)sin(yz)sin(zx))

Clearly, Δ=0 when any two of x, y, and z are equal or when x+y+z=π2.

Therefore, it is proven.

Video Lessons

Matrices and Determinants: Important Topics

Matrices and Determinants Important Topics for JEE

Important Questions for JEE on Matrices and Determinants

Important Questions for JEE Matrices and Determinants

Top 10 Most Important and Expected JEE Main Questions on Matrices and Determinants

Matrices and Determinants- Top 10 Most Important and Expected JEE Main Questions

Frequently Asked Questions

When 2 rows or columns of a determinant are interchanged, the value of the determinant is multiplied by -1.

When 2 rows or columns are interchanged, the sign of the determinant is reversed.

If all the elements of a row or column in a matrix are zero, then the determinant of the matrix is equal to zero.

If all elements of a row or column are zero, then the determinant is equal to zero.

What are Determinants Used For?

Determinants are used to provide formulas for the area or volume of certain geometric figures and also to calculate the inverse of a matrix.

No, determinants are not always positive.

No, determinants can be positive, negative, or zero.