Parabola Question 1

Question 1 - 2024 (27 Jan Shift 1)

If the shortest distance of the parabola $y^{2}=4 x$ from the centre of the circle $x^{2}+y^{2}-4 x-16 y+64=0$ is $\mathrm{d}$, then $\mathrm{d}^{2}$ is equal to :

(1) 16

(2) 24

(3) 20

(4) 36

Show Answer

Answer (3)

Solution

Equation of normal to parabola

$y=m x-2 m-m^{3}$

this normal passing through center of circle $(2,8)$

$8=2 m-2 m-m^{3}$

$m=-2$

So point $\mathrm{P}$ on parabola $\Rightarrow\left(\mathrm{am}^{2},-2 \mathrm{am}\right)=(4,4)$

And $\mathrm{C}=(2,8)$

$\mathrm{PC}=\sqrt{4+16}=\sqrt{20}$

$\mathrm{d}^{2}=20$