Limits Question 10

Question 10 - 2024 (31 Jan Shift 2)

Let $\quad \mathrm{f}: \rightarrow \mathrm{R} \rightarrow(0, \infty)$ be strictly increasing function such that $\lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$. Then, the value of $\lim _{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$ is equal to

(1) 4

(2) 0

(3) $7 / 5$

(4) 1

Show Answer

Answer (2)

Solution

$f: R \rightarrow(0, \infty)$

$\lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$

$\because \mathrm{f}$ is increasing

$\therefore \mathrm{f}(\mathrm{x})<\mathrm{f}(5 \mathrm{x})<\mathrm{f}(7 \mathrm{x})$

$\because \frac{\mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}<\frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}<\frac{\mathrm{f}(7 \mathrm{x})}{\mathrm{f}(\mathrm{x})}$

$1<\lim _{x \rightarrow \infty} \frac{f(5 x)}{f(x)}<1$

$\therefore\left[\frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}-1\right]$

$\Rightarrow 1-1=0$