Sequences And Series Question 9

Question 9 - 30 January - Shift 1

If $a_n=\frac{-2}{4 n^{2}-16 n+15}$, then $a_1+a_2+\ldots \ldots+a _{25}$ is equal to :

(1) $\frac{51}{144}$

(2) $\frac{49}{138}$

(3) $\frac{50}{141}$

(4) $\frac{52}{147}$

Show Answer

Answer: (3)

Solution:

Formula: General Term of a H.P.

Option (3)

If $a_n=\frac{-2}{4 n^{2}-16 n+15}$ then $a_1+a_2+\ldots \ldots . . a _{25}$

$\Rightarrow \quad \sum _{n=1}^{25} a_n=\sum \frac{-2}{4 n^{2}-16 n+15}$

$=\sum \frac{-2}{4 n^{2}-6 n-10 n+15}$

$=\sum \frac{-2}{2 n(2 n-3)-5(2 n-3)}$

$=\sum \frac{-2}{(2 n-3)(2 n-5)}$

$=\sum \frac{1}{2 n-3}-\frac{1}{2 n-5}$

$=\frac{1}{47}-\frac{1}{(-3)}$

$=\frac{50}{141}$