Area Under Curves Question 8

Question 8 - 30 January - Shift 2

Let $q$ be the maximum integral value of $p$ in $[0,10]$ for which the roots of the equation $x^{2}-p x+\frac{5}{4} p=0$ are rational. Then the area of the region

$\lbrace (x, y): 0 \leq y \leq(x-q)^{2}, 0 \leq x \leq q \rbrace $ is

(1) 243

(2) 25

(3) $\frac{125}{3}$

(4) 164

Show Answer

Answer: (1)

Solution:

Formula: Area between two curves - Area bounded by a curve with $\mathbf{x}$ - axis, Nature of roots

$x^{2}-px+\frac{5 p}{4}=0, \ p \ \in [0,10]$

$D=p^{2}-5 p=p(p-5), \ p \ \in [0,10]$

$D$ is perfect square iff $p=9$

$\therefore q=9$

$0 \leq y \leq(x-9)^{2}$

Area $=\int_0^{9}(x-9)^{2} d x=243$