Area Under Curves Question 1

Question 1 - 24 January - Shift 1

The area enclosed by the curves $y^{2}+4 x=4$ and $y-2 x=2$ is :

(1) $\frac{25}{3}$

(2) $\frac{22}{3}$

(3) 9

(4) $\frac{23}{3}$

Show Answer

Answer: (3)

Solution:

Formula: Area between two curves - Area enclosed between two curves intersecting at two different points

$y^{2}+4 x=4$

$y^{2}=-4(x-1)$

$A=\int _{-4}^{2}(\frac{4-y^{2}}{4}-\frac{y-2}{2}) d y$

$\begin{aligned} & =\left[2 y-\frac{y^3}{12}-\frac{y^2}{4}\right]_{-4}^2 \\ & =\left(4-\frac{2}{3}-1\right)-\left(-8+\frac{16}{3}-4\right) \\ & =3+12-\frac{18}{3} \\ & =15-6 \\ & =9\end{aligned}$

So, the correct option is (3)