Work Power and Energy 1 Question 1

1. A uniform cable of mass $M$ and length $L$ is placed on a horizontal surface such that its $\frac{1}{n}$ th part is hanging below the edge of the surface. To lift the hanging part of the cable upto the surface, the work done should be

(2019 Main, 9 April I)

(a) $\frac{2 M g L}{n^{2}}$

(b) $n M g L$

(c) $\frac{M g L}{n^{2}}$

(d) $\frac{M g L}{2 n^{2}}$

Show Answer

Answer:

Correct Answer: 1. (d)

Solution:

Given, mass of the cable is $M$.

So, mass of $\frac{1}{n}$ th part of the cable, i.e. hanged part of the cable is

$$ =M / n $$

Now, centre of mass of the hanged part will be its middle point. So, its distance from the top of the table will be $L / 2 n$.

$\therefore$ Initial potential energy of the hanged part of cable,

$$ \begin{aligned} U _i & =\frac{M}{n}(-g) \frac{L}{2 n} \\ \Rightarrow \quad U _i & =-\frac{M g L}{2 n^{2}} \end{aligned} $$

When whole cable is on the table,

its potential energy will be zero.

$$ \therefore \quad U _f=0 $$

Now, using work-energy theorem,

$$ \begin{aligned} & W _{\text {net }}=\Delta U=U _f-U _i \\ & \Rightarrow \quad W _{\text {net }}=0–\frac{M g L}{2 n^{2}} \\ & \Rightarrow \quad W _{\text {net }}=\frac{M g L}{2 n^{2}} \end{aligned} $$

[using Eqs. (ii) and (iii)]

2 Normal reaction force on the block is

$$ N=m a _{\text {net }} $$

where, $a _{\text {net }}=$ net acceleration of block.

$$ \begin{aligned} & =g+a=g+\frac{g}{2}=\frac{3 g}{2} \\ \Rightarrow \quad N & =m g+\frac{g}{2}=\frac{3 m g}{2} \end{aligned} $$

Now, in time ’ $t$ ’ block moves by a displacement $s$ given by

$$ s=0+\frac{1}{2} a t^{2}=\frac{1}{2} \frac{g}{2} \quad t^{2} \quad(\because u=0) $$

Here, $\quad a=\frac{g}{2}$ (given)

$\therefore$ Work done $=$ Force $\times$ Displacement

$$ \Rightarrow \quad W=\frac{3 m g}{2} \times \frac{g t^{2}}{4}=\frac{3 m g^{2} t^{2}}{8} . $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक