Simple Harmonic Motion 5 Question 16

21. Two independent harmonic oscillators of equal masses are oscillating about the origin with angular frequencies ω1 and ω2 and have total energies E1 and E2, respectively. The variations of their momenta p with positions x are shown in the figures. If ab=n2 and aR=n, then the correct equations is/are

(2015 Adv.)

(a) E1ω1=E2ω2

(b) ω2ω1=n2

(c) ω1ω2=n2

(d) E1ω1=E2ω2

Show Answer

Answer:

Correct Answer: 21. (b, d)

Solution:

  1. Ist Particle

P=0 at x=a

a ’ is the amplitude of oscillation ’ A1 ‘.

 At x=0,P=b (at mean position) mvmax=bvmax=bmE1=12mvmax2=m2b2m=b22mA1ω1=vmax=bmω1=bma=1mn2(A1=a,ab=n2)

IInd Particle

P=0 at x=R At A2=Rx=0,P=Rvmax=RmE2=12mvmax2=m2R2m=R22mA2ω2=Rmω2=RmR=1m

(b) ω2ω1=1/m1/mn2=n2

(c) ω1ω2=1mn2×1m=1m2n2

(d) E1ω1=b2/2m1/mn2=b2n22=a22n2=R22

E2ω2=R2/2m1/m=R22E1ω1=E2ω2

NOTE

It is not given that the second figure is a circle. But from the figure and as per the requirement of question, we consider it is a circle.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक