Rotation 5 Question 30

42. A carpet of mass $M$ made of inextensible material is rolled along its length in the form of a cylinder of radius $R$ and is kept on a rough floor. The carpet starts unrolling without sliding on the floor when a negligibly small push is given to it. Calculate the horizontal velocity of the axis of the cylindrical part of the carpet when its radius reduces to $R / 2$.

$(1990,8 M)$

Show Answer

Answer:

Correct Answer: 42. $v=\sqrt{\frac{14 R g}{3}}$

Solution:

  1. Let $M^{\prime}$ be the mass of unwound carpet. Then,

$$ M^{\prime}=\frac{M}{\pi R^{2}} \pi \frac{R}{2}^{2}=\frac{M}{4} $$

From conservation of mechanical energy :

$$ M g R-M^{\prime} g \frac{R}{2}=\frac{1}{2} \frac{M}{4} v^{2}+\frac{1}{2} I \omega^{2} $$

or $M g R-\frac{M}{4} g \frac{R}{2}=\frac{M v^{2}}{8}+\frac{1}{2} \frac{1}{2} \times \frac{M}{4} \times \frac{R^{2}}{4} \quad \frac{v}{R / 2}$

or $\quad \frac{7}{8} M g R=\frac{3 M v^{2}}{16}$

$\therefore \quad v=\sqrt{\frac{14 R g}{3}}$

Download Chapter Test

http://tinyurl.com/y2g5csax

7



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक