Rotation 5 Question 13

23. In the List-I below, four different paths of a particle are given as functions of time. In these functions, α and β are positive constants of appropriate dimensions and αβ. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: p is the linear momentum, L is the angular momentum about the origin, K is the kinetic energy, U is the potential energy and E is the total energy. Match each path in List-I with those quantities in List-II, which are conserved for that path.

(2018 Adv.)

List-I ist-II
P. r(t)=αti+βtj 1. p
Q. r(t)=αcosωti+βsinωtj 2. L
R. r(t)=α(cosωti+sinωtj) 3. K
S. r(t)=ati+β2t2j 4. U
5. E

(a) P1,2,3,4,5;Q2,5;R2,3,4,5;S5

(b) P1,2,3,4,5; 3, 5; R 2,3,4,5;S2,5

(c) P2,3,4;Q5;R1,2,4;S2,5

(d) P1,2,3,5;Q2,5;R2,3,4,5;S2,5

Passage Based Questions

Passage 1

One twirls a circular ring (of mass M and radius R ) near the tip of one’s finger as shown in Figure 1. In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is r. The finger rotates with an angular velocity ω0. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure 2). The coefficient of friction between the ring and the finger is μ and the acceleration due to gravity is g.

Show Answer

Answer:

Correct Answer: 23. (a)

Solution:

  1. When force F=0 potential energy U= constant F0 force is conservative Total energy E= constant List-I

(P) r(t)=αti^+βtj^

drdt=v=αi^+βj^= constant p= constant |v|=α2+β2= constant K= constant dvdt=a=0F=0U= constant E=U+K= constant L=m(r×v)=0L= constant 

P1,2,3,4,5

(Q) r(t)=αcosωti^+βsinωtj^

drdt=v=αωsinωt(i^)+βωcosωtj^ constant 

p constant

|v|=ω(αsinωt)2+(βcosωt)2 constant 

K constant

a=dvdt=ω2r0E= constant =K+U But K constant U constant L=m(r×v)=mωαβ(k^)= constant drdt=v=αω[sinωt(i^)+cosωtj^] constant R2,3,4,5r(t)=αi^+β2t2j^drdt=v=αi^+βj^ constant p constant |v|=α2+(βt)2 constant K constant a=dvdt=βj^0E= constant =K+U

But K constant U constant

L=m(r×v)=12αβt2k^ constant S5



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक