Rotation 3 Question 23

29. A man pushes a cylinder of mass $m _1$ with the help of a plank of mass $m _2$ as shown. There is no slipping at any contact. The horizontal component of the force applied by the man is $F$. Find

$(1999,10 M)$

(a) the accelerations of the plank and the centre of mass of the cylinder and

(b) the magnitudes and directions of frictional forces at contact points.

Show Answer

Solution:

  1. We can choose any arbitrary directions of frictional forces at different contacts.

In the final answer the negative values will show the opposite directions.

Let $f _1=$ friction between plank and cylinder

$f _2=$ friction between cylinder and ground

$a _1=$ acceleration of plank

$a _2=$ acceleration of centre of mass of cylinder

and $\alpha=$ angular acceleration of cylinder about its CM.

Since, there is no slipping anywhere

$\therefore \quad a _1=2 a _2$

$a _1=\frac{F-f _1}{m _2}$

$a _2=\frac{f _1+f _2}{m _1}$

$\alpha=\frac{\left(f _1-f _2\right) R}{I}=\frac{\left(f _1-f _2\right) R}{\frac{1}{2} m _1 R^{2}}$

$\alpha=\frac{2\left(f _1-f _2\right)}{m _1 R}$

$a _2=R \alpha=\frac{2\left(f _1-f _2\right)}{m _1}$

(a) Solving Eqs. (i) to (v), we get

(b)

$$ \begin{aligned} a _1 & =\frac{8 F}{3 m _1+8 m _2} \text { and } a _2=\frac{4 F}{3 m _1+8 m _2} \\ f _1 & =\frac{3 m _1 F}{3 m _1+8 m _2} ; \\ f _2 & =\frac{m _1 F}{3 m _1+8 m _2} \end{aligned} $$

Since, all quantities are positive, they are correctly shown in figures.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक