Rotation 3 Question 14

20. A sphere is rolling without slipping on a fixed horizontal plane surface.

In the figure, $A$ is the point of contact. $B$ is the centre of the sphere and $C$ is its topmost point. Then,

(2009)

(a) $\mathbf{v} _C-\mathbf{v} _A=2\left(\mathbf{v} _B-\mathbf{v} _C\right)$

(b) $\mathbf{v} _C-\mathbf{v} _B=\mathbf{v} _B-\mathbf{v} _A$

(c) $\left|\mathbf{v} _C-\mathbf{v} _A\right|=2\left|\mathbf{v} _B-\mathbf{v} _C\right|$

(d) $\left|\mathbf{v} _C-\mathbf{v} _A\right|=4\left|\mathbf{v} _B\right|$

Show Answer

Answer:

Correct Answer: 20. (b, c)

Solution:

  1. $v _A=0, v _B=v$ and $v _C=2 v$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक