Rotation 3 Question 14
20. A sphere is rolling without slipping on a fixed horizontal plane surface.
In the figure, $A$ is the point of contact. $B$ is the centre of the sphere and $C$ is its topmost point. Then,
(2009)
(a) $\mathbf{v} _C-\mathbf{v} _A=2\left(\mathbf{v} _B-\mathbf{v} _C\right)$
(b) $\mathbf{v} _C-\mathbf{v} _B=\mathbf{v} _B-\mathbf{v} _A$
(c) $\left|\mathbf{v} _C-\mathbf{v} _A\right|=2\left|\mathbf{v} _B-\mathbf{v} _C\right|$
(d) $\left|\mathbf{v} _C-\mathbf{v} _A\right|=4\left|\mathbf{v} _B\right|$
Show Answer
Answer:
Correct Answer: 20. (b, c)
Solution:
- $v _A=0, v _B=v$ and $v _C=2 v$