Rotation 1 Question 14

17. From a circular disc of radius $R$ and mass $9 M$, a small disc of radius $R / 3$ is removed from the disc. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through $O$ is

(2005)

(a) $4 M R^{2}$

(b) $\frac{40}{9} M R^{2}$

(c) $10 M R^{2}$

(d) $\frac{37}{9} M R^{2}$

Show Answer

Answer:

Correct Answer: 17. (a)

Solution:

  1. $I _{\text {remaining }}=I _{\text {whole }}-I _{\text {removed }}$

or $\quad I=\frac{1}{2}(9 M)(R)^{2}-\frac{1}{2} m \frac{R}{3}^{2}+\frac{1}{2} m \frac{2 R}{3}^{2}$

Here, $m=\frac{9 M}{\pi R^{2}} \times \pi \frac{R}{3}^{2}=M$

Substituting in Eq. (i), we have

$$ I=4 M R^{2} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक